1.已知直線3x+4y-5=0與直線6x+my+14=0平行,則它們之間的距離是$\frac{12}{5}$.

分析 求出m,轉(zhuǎn)化為直線3x+4y-5=0與直線3x+4y+7=0之間的距離.

解答 解:由題意,m=8,
直線3x+4y-5=0與直線3x+4y+7=0之間的距離是$\frac{|-5-7|}{\sqrt{9+16}}$=$\frac{12}{5}$,
故答案為:$\frac{12}{5}$.

點(diǎn)評(píng) 本題考查兩條平行線間的距離,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖是一名籃球運(yùn)動(dòng)員在五場(chǎng)比賽中所得分?jǐn)?shù)的莖葉圖,則該運(yùn)動(dòng)員在這五場(chǎng)比賽中得分的平均數(shù)、中位數(shù)分別為( 。
A.14,12B.12,14C.14,10D.10,12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知x>0,若(x-i)2是純虛數(shù)(其中i為虛數(shù)單位),則x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知矩陣$A=[{\begin{array}{l}2&1\\ 3&2\end{array}}]$,列向量$X=[{\begin{array}{l}x\\ y\end{array}}],B=[{\begin{array}{l}4\\ 7\end{array}}]$,若AX=B,直接寫(xiě)出A-1,并求出X.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.母線長(zhǎng)為1的圓錐的側(cè)面展開(kāi)圖的圓心角等于120°,則該圓錐的體積為( 。
A.$\frac{{2\sqrt{2}}}{81}π$B.$\frac{{4\sqrt{5}}}{81}π$C.$\frac{8}{81}π$D.$\frac{10}{81}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,四棱錐P-ABCD中,BC∥AD,BC=1,AD=2,AC⊥CD,且平面PCD⊥平面ABCD.
(1)求證:AC⊥PD;
(2)在線段PA上是否存在點(diǎn)E,使BE∥平面PCD?若存在,確定點(diǎn)E的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某校為了解高二的1553名同學(xué)對(duì)教師的教學(xué)意見(jiàn),現(xiàn)決定用系統(tǒng)抽樣的方法抽取一個(gè)容量為50的樣本,先在總體中隨機(jī)剔除n個(gè)個(gè)體,然后把剩下的個(gè)體按0001,0002,0003…編號(hào)并分成m個(gè)組,則n和m應(yīng)分別是(  )
A.53,50B.53,30C.3,50D.3,31

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知點(diǎn)P(x0,y0)為橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上一點(diǎn),F(xiàn)1,F(xiàn)2分別為橢圓C的左右焦點(diǎn),當(dāng)y0=$\frac{2}$時(shí),∠F1PF2=60°,則橢圓C的離心率為( 。
A.$\frac{{2\sqrt{7}}}{7}$B.$\frac{{\sqrt{7}}}{7}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在極坐標(biāo)系中,求直線$θ=\frac{π}{4}(ρ∈R)$被曲線ρ=4sinθ所截得的弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案