17.在△ABC中,若$sin\frac{A}{2}=cos\frac{A+B}{2}$,則△ABC一定是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等邊三角形

分析 由$\frac{A+B}{2}=\frac{π-C}{2}$,得sin$\frac{A}{2}$=sin$\frac{C}{2}$,⇒$\frac{A}{2}=\frac{C}{2}$,

解答 解:∵$sin\frac{A}{2}=cos\frac{A+B}{2}$=cos$\frac{π-C}{2}$=sin$\frac{C}{2}$,⇒$\frac{A}{2}=\frac{C}{2}$,則△ABC是等腰三角形,
故選:A.

點評 本題考查了三角形中三角和為π,及三角恒等變形,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若集合為$\left\{{1,a,\frac{a}}\right\}=\left\{{0,{a^2},a+b}\right\}$時,則a-b=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.圓(x+2)2+y2=5的圓心為( 。
A.(2,0)B.(0,2)C.(-2,0)D.(0,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在Rt△ABC中,三邊長分別為a,b,c,則c2=a2+b2,則在同一頂點引出的三條兩兩垂直的三棱錐V-ABC中,則有${S^2}_{△ABC}={S^2}_{△VAB}+{S^2}_{△VBC}+{S^2}_{△VAC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.類比平面內(nèi)“垂直于同一條直線的兩條直線互相平行”的性質(zhì),可推出空間下列結(jié)論,則其中正確的結(jié)論的個數(shù)有(  )
①垂直于同一條直線的兩條直線互相平行
②垂直于同一個平面的兩條直線互相平行
③垂直于同一條直線的兩個平面互相平行
④垂直于同一個平面的兩個平面互相平行.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為4,2,則輸出v的值為( 。
A.12B.15C.25D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$E:\frac{x^2}{5}+\frac{y^2}{4}=1$的右焦點為F,設(shè)直線l:x=5與x軸的交點為E,過點F且斜率為k的直線l1與橢圓交于A,B兩點,M為線段EF的中點.
(I)若直線l1的傾斜角為$\frac{π}{4}$,求△ABM的面積S的值;
(Ⅱ)過點B作直線BN⊥l于點N,證明:A,M,N三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)全集U=R,集合A={x|x<-1或2≤x<3},B={x|-2≤x<4},則(∁UA)∪B={x|x≥-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.用另一種方法表示下列集合.
(1){絕對值不大于2的整數(shù)};
(2){能被3整除,且小于10的正數(shù)};
(3){x|x=|x|,x<5,且x∈Z};
(4){(x,y)|x+y=6,x∈N*,y∈N*};
(5){-3,-1,1,3,5}.

查看答案和解析>>

同步練習(xí)冊答案