8.圓(x+2)2+y2=5的圓心為( 。
A.(2,0)B.(0,2)C.(-2,0)D.(0,-2)

分析 直接利用圓的標(biāo)準(zhǔn)方程,可得結(jié)論.

解答 解:圓(x+2)2+y2=5,圓心為(-2,0).
故選:C.

點(diǎn)評(píng) 本題考查了圓的標(biāo)準(zhǔn)方程和基本概念等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.我們把平面直角坐標(biāo)系中,函數(shù)y=f(x),x∈D上的點(diǎn)P(x,y),滿足x∈N*,y∈N*的點(diǎn)稱為函數(shù)y=f(x)的“正格點(diǎn)”.
(1)請(qǐng)你選取一個(gè)m的值,使對(duì)函數(shù)f(x)=sinmx,x∈R的圖象上有正格點(diǎn),并寫出函數(shù)的一個(gè)正格點(diǎn)坐標(biāo).
(2)若函數(shù)f(x)=sinmx,x∈R,m∈(1,2)與函數(shù)g(x)=lgx的圖象有正格點(diǎn)交點(diǎn),求m的值,并寫出兩個(gè)函數(shù)圖象的所有交點(diǎn)個(gè)數(shù).
(3)對(duì)于(2)中的m值,函數(shù)f(x)=sinmx,$x∈({0\;,\;\;\frac{5}{9}})$時(shí),不等式logax>sinmx恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=1+log2x在x∈[4,+∞)上的值域是( 。
A.[2,+∞)B.(3,+∞)C.[3,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)對(duì)任意x,y∈R有f(x)+f(y)=2+f(x+y),且當(dāng)x>0時(shí),f(x)>2.
(1)判斷函數(shù)f(x)的單調(diào)性,并給與證明;
(2)若f(3)=5,解不等式f(a2-2a-2)<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 3x+2y-5≤0\\ x+y≤2.\end{array}\right.$則z=5x+4y的最大值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=lg(x2-2ax+a)的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍是(0,1)(用區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)$y=\frac{x}{{\sqrt{(x+2)(x-2)}}}$的定義域是(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,若$sin\frac{A}{2}=cos\frac{A+B}{2}$,則△ABC一定是( 。
A.等腰三角形B.直角三角形C.等腰直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在極坐標(biāo)系中,曲線C的方程為ρ2cos2θ=9,點(diǎn)P(2$\sqrt{3}$,$\frac{π}{6}$),以極點(diǎn)O為原點(diǎn),極軸為x軸的正半軸建立直角坐標(biāo)系.
(1)求直線OP的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)若直線OP與曲線C交于A、B兩點(diǎn),求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案