解答:
解:(Ⅰ)∵f′(x)=
-a-
=
,
令h(x)=ax
2-x+1-a(x>0)
(1)當(dāng)a=0時(shí),h(x)=-x+1(x>0),
當(dāng)x∈(0,1),h(x)>0,f′(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(1,+∞),h(x)<0,f′(x)>0,函數(shù)f(x)單調(diào)遞增.
(2)當(dāng)a≠0時(shí),由f′(x)=0,即ax
2-x+1-a=0,解得:x
1=1,x
2=
-1.
當(dāng)a=
時(shí)x
1=x
2,h(x)≥0恒成立,此時(shí)f′(x)≤0,函數(shù)f(x)單調(diào)遞減;
當(dāng)0<a<
時(shí),
-1>1>0,x∈(0,1)時(shí)h(x)>0,f′(x)<0,函數(shù)f(x)單調(diào)遞減;
x∈(1,
-1)時(shí),h(x)<0,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
x∈(
-1,+∞)時(shí),h(x)>0,f′(x)<0,函數(shù)f(x)單調(diào)遞減.
當(dāng)a<0時(shí),
-1<0,當(dāng)x∈(0,1),h(x)>0,f′(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(1,+∞),h(x)<0,f′(x)>0,函數(shù)f(x)單調(diào)遞增.
綜上所述:當(dāng)a≤0時(shí),函數(shù)f(x)在(0,1)單調(diào)遞減,(1,+∞)單調(diào)遞增;
當(dāng)a=
時(shí)x
1=x
2,h(x)≥0恒成立,此時(shí)f′(x)≤0,函數(shù)f(x)在(0,+∞)單調(diào)遞減;
當(dāng)0<a<
時(shí),函數(shù)f(x)在(0,1)單調(diào)遞減,(1,
-1)單調(diào)遞增,(
-1,+∞)單調(diào)遞減.
(Ⅱ)當(dāng)a=
時(shí),f(x)在(0,1)上是減函數(shù),在(1,2)上是增函數(shù),所以對(duì)任意x
1∈(0,2),
有f(x
1)≥f(1)=-
,
又已知存在x
2∈[1,2],使f(x
1)≥g(x
2),所以-
≥g(x
2),x
2∈[1,2],
又g(x)=(x-1)
2+b-1,x
2∈[1,2]時(shí):g(x)是增函數(shù),
∴g(x)max=g(2)=b,
∴b≤-
.
∴實(shí)數(shù)b取值范圍是:(-∞,-
].