已知函數(shù)f(x)=lnx-ax+
1-a
x
-1(a∈R).
(Ⅰ)當(dāng)a≤
1
2
時(shí),討論f(x)的單調(diào)性;
(Ⅱ)設(shè)g(x)=x2-2x+b.當(dāng)a=
1
4
時(shí),若對(duì)任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求實(shí)數(shù)b取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)直接利用函數(shù)與導(dǎo)數(shù)的關(guān)系,求出函數(shù)的導(dǎo)數(shù),再討論函數(shù)的單調(diào)性;
(Ⅱ)利用導(dǎo)數(shù)求出f(x)的最小值、利用二次函數(shù)知識(shí)或分離常數(shù)法求出g(x)在閉區(qū)間[1,2]上的最大值,然后解不等式求參數(shù).
解答: 解:(Ⅰ)∵f′(x)=
1
x
-a-
1-a
x2
=
-ax2+x+a-1
x2
,
令h(x)=ax2-x+1-a(x>0)
(1)當(dāng)a=0時(shí),h(x)=-x+1(x>0),
當(dāng)x∈(0,1),h(x)>0,f′(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(1,+∞),h(x)<0,f′(x)>0,函數(shù)f(x)單調(diào)遞增.
(2)當(dāng)a≠0時(shí),由f′(x)=0,即ax2-x+1-a=0,解得:x1=1,x2=
1
a
-1.
當(dāng)a=
1
2
時(shí)x1=x2,h(x)≥0恒成立,此時(shí)f′(x)≤0,函數(shù)f(x)單調(diào)遞減;
當(dāng)0<a<
1
2
時(shí),
1
a
-1>1>0,x∈(0,1)時(shí)h(x)>0,f′(x)<0,函數(shù)f(x)單調(diào)遞減;
x∈(1,
1
a
-1)時(shí),h(x)<0,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
x∈(
1
a
-1,+∞)時(shí),h(x)>0,f′(x)<0,函數(shù)f(x)單調(diào)遞減.
當(dāng)a<0時(shí),
1
a
-1<0,當(dāng)x∈(0,1),h(x)>0,f′(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(1,+∞),h(x)<0,f′(x)>0,函數(shù)f(x)單調(diào)遞增.
綜上所述:當(dāng)a≤0時(shí),函數(shù)f(x)在(0,1)單調(diào)遞減,(1,+∞)單調(diào)遞增;
當(dāng)a=
1
2
時(shí)x1=x2,h(x)≥0恒成立,此時(shí)f′(x)≤0,函數(shù)f(x)在(0,+∞)單調(diào)遞減;
當(dāng)0<a<
1
2
時(shí),函數(shù)f(x)在(0,1)單調(diào)遞減,(1,
1
a
-1)單調(diào)遞增,(
1
a
-1,+∞)單調(diào)遞減.
(Ⅱ)當(dāng)a=
1
4
時(shí),f(x)在(0,1)上是減函數(shù),在(1,2)上是增函數(shù),所以對(duì)任意x1∈(0,2),
有f(x1)≥f(1)=-
1
2
,
又已知存在x2∈[1,2],使f(x1)≥g(x2),所以-
1
2
≥g(x2),x2∈[1,2],
又g(x)=(x-1)2+b-1,x2∈[1,2]時(shí):g(x)是增函數(shù),
∴g(x)max=g(2)=b,
∴b≤-
1
2

∴實(shí)數(shù)b取值范圍是:(-∞,-
1
2
].
點(diǎn)評(píng):本題將導(dǎo)數(shù)、二次函數(shù)、不等式知識(shí)有機(jī)的結(jié)合在一起,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的最值以及二次函數(shù)的最值問題,考查了同學(xué)們分類討論的數(shù)學(xué)思想以及解不等式的能力;考查了學(xué)生綜合運(yùn)用所學(xué)知識(shí)分析問題、解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不論a為何實(shí)數(shù),直線l:(a+1)x+y-2-a=0(a∈R)必過定點(diǎn)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x2+2(m-1)x+m在區(qū)間[-2,+∞)上是減函數(shù),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=|x-3|+1,f(x)-a=0有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題中
①設(shè)A,B兩個(gè)定點(diǎn),若|
PA
|-|
PB
|=3,則動(dòng)點(diǎn)P的軌跡為雙曲線.
②過定圓C上一定點(diǎn)A作圓的動(dòng)弦A,B,O為原點(diǎn),若
OP
=
1
2
OA
+
OB
),則動(dòng)點(diǎn)P的軌跡為橢圓.
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率.
④雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點(diǎn),
其中真命題的序號(hào)為
 
(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin(-
14
3
π)的值等于( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
y≥0
x-y≥0
2x-y-2≤0
,記t=
y-1
x+1
的最大值為m,最小值為n,則m-n=( 。
A、. 
4
3
B、
3
4
C、-
4
3
D、-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x+1)=x2-x-1,則y=f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PB⊥平面ABC,△ABC為直角三角形,PB=BC=AC,∠ACB=90°.
(1)求PA、PC與平面ABC所成的角的大。
(2)求PA與平面PBC所成的角的正弦值;
(3)試比較∠PAC與∠PAB的正弦值的大。

查看答案和解析>>

同步練習(xí)冊答案