10.函數(shù)y=1-2sin2(2x)的最小正周期是$\frac{π}{2}$.

分析 利用二倍角和輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期

解答 解:函數(shù)y=1-2sin2(2x)
化簡(jiǎn)可得:y=1-2($\frac{1}{2}$$-\frac{1}{2}cos4x$)=cos4x.
∴最小正周期T=$\frac{2π}{4}=\frac{π}{2}$,
故答案為$\frac{π}{2}$.

點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.雙曲線M:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,直線x=a與雙曲線M漸近線交于點(diǎn)P,若sin∠PF1F2=$\frac{1}{3}$,則該雙曲線的離心率為$\frac{9}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,曲線C由左半橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0,x≤0)和圓N:(x-2)2+y2=5在y軸右側(cè)的部分連接而成,A,B是M與N的公共點(diǎn),點(diǎn)P,Q(均異于點(diǎn)A,B)分別是M,N上的動(dòng)點(diǎn).
(1)若|PQ|的最大值為4+$\sqrt{5}$,求半橢圓M的方程;
(2)若直線PQ過(guò)點(diǎn)A,且$\overrightarrow{AQ}$=-2$\overrightarrow{AP}$,$\overrightarrow{BP}$⊥$\overrightarrow{BQ}$,求半橢圓M的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.大學(xué)生小王自主創(chuàng)業(yè),在鄉(xiāng)下承包了一塊耕地種植某種水果,每季投入2萬(wàn)元,根據(jù)以往的經(jīng)驗(yàn),每季收獲的此種水果能全部售完,且水果的市場(chǎng)價(jià)格和這塊地上的產(chǎn)量具有隨機(jī)性,互不影響,具體情況如表:
水果產(chǎn)量(kg)30004000
概率0.40.6
水果市場(chǎng)價(jià)格(元/kg)1620
概率0.50.5
(Ⅰ)設(shè)X表示在這塊地種植此水果一季的利潤(rùn),求X的分布列及期望;
(Ⅱ)在銷售收入超過(guò)5萬(wàn)元的情況下,利潤(rùn)超過(guò)5萬(wàn)元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.將函數(shù)$y=sin(2x+\frac{π}{3})+2$的圖象向右平移$\frac{π}{6}$個(gè)單位,再向下平移2個(gè)單位所得圖象對(duì)應(yīng)函數(shù)的解析式是y=sin2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.甲與其四位朋友各有一輛私家車,甲的車牌尾數(shù)是0,其四位朋友的車牌尾數(shù)分別是0,2,1,5,為遵守當(dāng)?shù)?月1日至5日5天的限行規(guī)定(奇數(shù)日車牌尾數(shù)為奇數(shù)的車通行,偶數(shù)日車牌尾數(shù)為偶數(shù)的車通行),五人商議拼車出行,每天任選一輛符合規(guī)定的車,但甲的車最多只能用一天,則不同的用車方案總數(shù)為64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知{an}為等差數(shù)列,若a1=6,a3+a5=0,則數(shù)列{an}的通項(xiàng)公式為an=8-2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若${z_1},{z_2}∈C,{z_1}•\overline{z_2}+\overline{z_1}•{z_2}$是( 。
A.純虛數(shù)B.實(shí)數(shù)C.虛數(shù)D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)復(fù)數(shù)z滿足z2=3-4i,則z的模是( 。
A.$\sqrt{5}$B.5C.$\sqrt{3}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案