5.將函數(shù)$y=sin(2x+\frac{π}{3})+2$的圖象向右平移$\frac{π}{6}$個(gè)單位,再向下平移2個(gè)單位所得圖象對(duì)應(yīng)函數(shù)的解析式是y=sin2x.

分析 根據(jù)函數(shù)圖象平移變換“左加右減,上加下減”的原則,結(jié)合平移前函數(shù)的解析式及函數(shù)平移方式,可得答案.

解答 解:將函數(shù)$y=sin(2x+\frac{π}{3})+2$=sin[2(x+$\frac{π}{6}$)]的圖象向右平移$\frac{π}{6}$個(gè)單位,
可得函數(shù)y=sin[2(x+$\frac{π}{6}$-$\frac{π}{6}$)]+2=sin2x+2的圖象,
再向下平移2個(gè)單位可得函數(shù)y=sin2x的圖象.
故答案為:y=sin2x.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)圖象的平移變換,熟練掌握函數(shù)圖象平移變換“左加右減,上加下減”的原則,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.執(zhí)行如圖的程序框圖,則輸出的結(jié)果為(  )
A.15B.3C.-11D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=$\frac{ln|x-1|}{|1-x|}$的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.歐拉,瑞士數(shù)學(xué)家,18世紀(jì)數(shù)學(xué)界最杰出的人物之一,是有史以來(lái)最多遺產(chǎn)的數(shù)學(xué)家,數(shù)學(xué)史上稱十八世紀(jì)為“歐拉時(shí)代”.1735年,他提出了歐拉公式:e=cosθ+isinθ.被后人稱為“最引人注目的數(shù)學(xué)公式”.若$θ=\frac{2π}{3}$,則復(fù)數(shù)z=e對(duì)應(yīng)復(fù)平面內(nèi)的點(diǎn)所在的象限為(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$,點(diǎn)A在橢圓C上,|AF1|=2,∠F1AF2=60°,過(guò)F2與坐標(biāo)軸不垂直的直線l與橢圓C交于P,Q兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若P,Q的中點(diǎn)為N,在線段OF2上是否存在點(diǎn)M(m,0),使得MN⊥PQ?若存在,求實(shí)數(shù)m的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)y=1-2sin2(2x)的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)F1、F2分別為橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn),點(diǎn)A為橢圓C的左頂點(diǎn),點(diǎn)B為橢圓C的上頂點(diǎn),且|AB|=$\sqrt{3}$,△BF1F2為直角三角形.
(1)求橢圓C的方程;
(2)設(shè)直線y=kx+2與橢圓交于P、Q兩點(diǎn),且OP⊥OQ,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=$\frac{2}{x}$-2+2alnx.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)在區(qū)間[$\frac{1}{2}$,2]上的最小值為0,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入4萬(wàn)元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計(jì)數(shù)的.[附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.
(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;
(2)試估計(jì)該公司投入4萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:
廣告投入x(單位:萬(wàn)元)12345
銷售收益y(單位:萬(wàn)元)2327
由表中的數(shù)據(jù)顯示,x與y之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出y關(guān)于x的回歸直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案