10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),x≤1}\\{2|x-5|-2,3≤x≤7}\end{array}\right.$(a>0,a≠1)的圖象上關(guān)于直線x=1對稱的點(diǎn)有且僅有一對,則實(shí)數(shù)a的取值范圍是( 。
A.[$\frac{\sqrt{7}}{7}$,$\frac{\sqrt{5}}{5}$]∪{$\sqrt{3}$}B.[$\sqrt{3}$,$\sqrt{5}$)∪{$\frac{\sqrt{7}}{7}$}C.[$\frac{\sqrt{7}}{7}$,$\frac{\sqrt{5}}{5}$]∪{$\sqrt{5}$}D.[$\sqrt{3}$,$\sqrt{7}$)∪{$\frac{\sqrt{5}}{5}$}

分析 若函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),x≤1}\\{2|x-5|-2,3≤x≤7}\end{array}\right.$(a>0,a≠1)的圖象上關(guān)于直線x=1對稱的點(diǎn)有且僅有一對,則函數(shù)y=logax與y=2|x-5|-2在[3,7]上有且只有一個交點(diǎn),解得實(shí)數(shù)a的取值范圍.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),x≤1}\\{2|x-5|-2,3≤x≤7}\end{array}\right.$(a>0,a≠1)的圖象上
關(guān)于直線x=1對稱的點(diǎn)有且僅有一對,
∴函數(shù)y=logax,與y=2|x-5|-2在[3,7]上有且只有一個交點(diǎn),
當(dāng)對數(shù)函數(shù)的圖象過(5,-2)點(diǎn)時,
由loga5=-2,解得a=$\frac{\sqrt{5}}{5}$;
當(dāng)對數(shù)函數(shù)的圖象過(3,2)點(diǎn)時,
由loga3=2,解得a=$\sqrt{3}$;
當(dāng)對數(shù)函數(shù)的圖象過(7,2)點(diǎn)時,
由loga7=2,解得a=$\sqrt{7}$.
故a∈[$\sqrt{3}$,$\sqrt{7}$)∪{$\frac{\sqrt{5}}{5}$},
故選:D.

點(diǎn)評 本題考查的知識點(diǎn)是分段函數(shù)的應(yīng)用,注意運(yùn)用轉(zhuǎn)化思想,轉(zhuǎn)化為函數(shù)的圖象的交點(diǎn)問題,考查數(shù)形結(jié)合思想,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,∠B=90°,$\overrightarrow{AB}=({1\;\;,\;\;-2})$,$\overrightarrow{AC}=({3\;\;,\;\;λ})$,則λ=( 。
A.-1B.1C.$\frac{3}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若將函數(shù)f(x)=sin2x+cos2x的圖象向左平移φ(φ>0)個單位,所得的圖象關(guān)于y軸對稱,則φ的最小值是( 。
A.$\frac{π}{4}$B.$\frac{3π}{8}$C.$\frac{π}{8}$D.$\frac{5π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某幾何體的三視圖如圖所示,它的表面積為( 。
A.66πB.51πC.48πD.33π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)全集U=R,A={x|x2-x-6<0},B={x|y=lg(x+1)},則圖中陰影部分表示的集合為( 。
A.{x|-3<x<-1}B.{x|-3<x<0}C.{x|-1<x<3}D.{x|x>-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知m,n是兩條不同的直線,α,β是兩個不重合的平面.命題p:若α∩β=m,m⊥n,則n⊥α;命題q:若m∥α,m?β,α∩β=n,則m∥n.那么下列命題中的真命題是(  )
A.p∧qB.p∨¬qC.¬p∧qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x≤2\\ y≤1\\ x+2y-2≥0\end{array}\right.$,則$z=\frac{y+1}{x+1}$的取值范圍是為[$\frac{1}{3}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知p是一個素數(shù),n和α都是正整數(shù),且滿足3n-2n=pα.求證:n是一個素數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ln(ax+$\frac{1}{2}$)+$\frac{2}{2x+1}$.
(1)若a=1,且f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)是否存在實(shí)數(shù)a,使得函數(shù)f(x)在(0,+∞)上的最小值為1?若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案