A. | -1 | B. | 1 | C. | $\frac{3}{2}$ | D. | 4 |
分析 根據(jù)平面向量的三角形法則求出$\overrightarrow{BC}$,再由$\overrightarrow{AB}$⊥$\overrightarrow{BC}$得出$\overrightarrow{AB}$•$\overrightarrow{BC}$=0,列出方程求出λ的值.
解答 解:△ABC中,$\overrightarrow{AB}=({1\;\;,\;\;-2})$,$\overrightarrow{AC}=({3\;\;,\;\;λ})$,
∴$\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{AB}$=(2,λ+2),
又∠B=90°,∴$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,
∴$\overrightarrow{AB}$•$\overrightarrow{BC}$=0,
即2-2(λ+2)=0,
解得λ=-1.
故選:A.
點(diǎn)評(píng) 本題考查了平面向量的線性運(yùn)算與數(shù)量積運(yùn)算問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{5\sqrt{13}}}{26}$ | B. | $-\frac{{5\sqrt{13}}}{26}$ | C. | $-\frac{{3\sqrt{39}}}{26}$ | D. | $\frac{{3\sqrt{39}}}{26}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 等邊三角形 | B. | 等腰三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | c<b<a | B. | c<a<b | C. | b<c<a | D. | a<c<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{\sqrt{7}}{7}$,$\frac{\sqrt{5}}{5}$]∪{$\sqrt{3}$} | B. | [$\sqrt{3}$,$\sqrt{5}$)∪{$\frac{\sqrt{7}}{7}$} | C. | [$\frac{\sqrt{7}}{7}$,$\frac{\sqrt{5}}{5}$]∪{$\sqrt{5}$} | D. | [$\sqrt{3}$,$\sqrt{7}$)∪{$\frac{\sqrt{5}}{5}$} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com