設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題中正確的是(  )
A、若m∥α,n⊥β且α⊥β,則m⊥n
B、若α⊥β,m∥n且 n⊥β,則m∥α
C、若m?α,n?β且m∥n,則α∥β
D、若m⊥α,n⊥β且m⊥n,則α⊥β
考點:空間中直線與平面之間的位置關(guān)系
專題:探究型,空間位置關(guān)系與距離
分析:對選項分別進行判斷,即可得出結(jié)論.
解答: 解:若m∥α,n⊥β且α⊥β,則平行,相交或異面,故A不正確;
若α⊥β,m∥n且 n⊥β,則m∥α或m?α,故B不正確;
根據(jù)面面平行的判定定理,可得C不正確;
根據(jù)平面與平面垂直的判定定理,可得D正確,
故選D.
點評:本題考查空間中直線與平面之間的位置關(guān)系,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列各式的值:
(1)0.027-
1
3
-(-
1
7
)-2+256
3
4
-3-1+(
2
-1)0
;
(2)lg25+lg5•lg40+lg22+lg2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x2+4x>0},B={x|a-1<x<a+1},其中x∈R,設(shè)U=R.
(1)求∁UA;
(2)如果B⊆∁UA,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2-2x,x≥0
x2-2x,x<0
,若f(a)-f(-a)≤2f(1),則a的取值范圍是( 。
A、[1,+∞)
B、(-∞,1]
C、[-1,1]
D、[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=
2
0
4-x2
dx,則
a
0
sinxdx=( 。
A、2πB、πC、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c是實數(shù),下列命題是真命題的有(  )個
①“a>b”是“a2>b2”的充分條件;
②“a>b”是“a2>b2”的必要條件;
③“a>b”是“ac2>bc2”的充分條件;
④“a>b”是“|a|>|b|”的充要條件.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|y=2x},N={x|y=lg(x-1)},則M∩∁RN=(  )
A、(-∞,1]B、(-∞,1)
C、RD、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(
1
2x-1
+
1
2
).
(Ⅰ)判斷函數(shù)f(x)的奇偶性;
(Ⅱ)證明f(x)>0;
(Ⅲ)若f(x)•f(-x)=
25
36
x2,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的三內(nèi)角A、B、C成等差數(shù)列,所對的三邊a、b、c成等比數(shù)列,則A-C=
 

查看答案和解析>>

同步練習(xí)冊答案