分析 由2Sn=an2+n,an>0.n=1時(shí),2a1=${a}_{1}^{2}$+1,解得a1=1.同理可得a2=2,….猜想an=n.再利用數(shù)學(xué)歸納法證明即可.
解答 解:由2Sn=an2+n,an>0.n=1時(shí),2a1=${a}_{1}^{2}$+1,解得a1=1.
n=2時(shí),2(1+a2)=${a}_{2}^{2}$+2,解得a2=2,….
猜想an=n.
下面利用數(shù)學(xué)歸納法證明:(1)當(dāng)n=1時(shí),a1=1成立.
(2)假設(shè)n=k∈N*時(shí),ak=k.則Sk=$\frac{k(k+1)}{2}$.
則n=k+1時(shí),2$[\frac{k(k+1)}{2}+{a}_{k+1}]$=${a}_{k+1}^{2}$+k+1,ak+1>0,解得ak+1=k+1.
∴n=k+1時(shí)有時(shí)成立.
綜上可得:an=n對(duì)?n∈N*都成立.
點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、猜想方法、數(shù)學(xué)歸納法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{3}{4}$ | B. | -$\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9,$\frac{4}{9}$ | B. | 11,$\frac{5}{11}$ | C. | 11,$\frac{10}{11}$ | D. | 13,$\frac{12}{13}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com