分析 求得圓心及半徑,由$\overrightarrow{PA}$•$\overrightarrow{PB}$=($\overrightarrow{MA}$-$\overrightarrow{MP}$)•($\overrightarrow{MB}$-$\overrightarrow{MP}$)=-1+|$\overrightarrow{MP}$|2.設(shè)P點坐標(biāo),利用兩點之間的距離公式,根據(jù)二次函數(shù)的單調(diào)性即可求得9≤|$\overrightarrow{MP}$|2≤49,即可求得$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍.
解答 解:由圓Γ1:(x-2)2+y2=1的圓心M(2,0),半徑為1,
則∵$\overrightarrow{PA}$•$\overrightarrow{PB}$=($\overrightarrow{MA}$-$\overrightarrow{MP}$)•($\overrightarrow{MB}$-$\overrightarrow{MP}$)
=$\overrightarrow{MA}$•$\overrightarrow{MB}$-$\overrightarrow{MP}$•($\overrightarrow{MA}$+$\overrightarrow{MB}$)+$\overrightarrow{MP}$2=-|$\overrightarrow{MA}$|•|$\overrightarrow{MB}$|•cosπ-0+|$\overrightarrow{MP}$|2
=-1+|$\overrightarrow{MP}$|2.
橢圓Γ2:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,設(shè)P(5cosθ,4sinθ),θ∈[0,2π],
∴|$\overrightarrow{MP}$|2=(5cosθ-2)2+16sin2θ=25cos2θ-20cosθ+4+16sin2θ=9cos2θ-20cosθ+20,
設(shè)t=cosθ,t∈[-1,1],f(t)=9t2-20t+20,t∈[-1,1],
對稱軸t=-$\frac{-20}{2×9}$=$\frac{10}{9}$>1,
則f(t)在[-1,1]單調(diào)遞減,則當(dāng)t=-1時取最大值為f(t)max=49,
當(dāng)t=1時取最小值,最小值為f(t)min=9,
9≤|$\overrightarrow{MP}$|2≤49,則8≤-1+|$\overrightarrow{MP}$|2≤48,
∴$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍[8,48].
故答案為:[8,48].
點評 本題考查向量數(shù)量積,橢圓的參數(shù)方程,兩點之間的距離公式,二次函數(shù)的單調(diào)性及最值,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\frac{1}{3}$ | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com