18.已知i是虛數(shù)單位,a,b∈R,則“a=b=2”是“(a+bi)2=8i”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 先由a=b=2看能否一定得到(a+bi)2=8i,判斷“a=b=2”是不是“(a+bi)2=8i”的充分條件;
再由(a+bi)2=8i看能否一定得到a=b=2,判斷“a=b=2”是不是“(a+bi)2=8i”的必要條件.

解答 解:當(dāng)a=b=2時(shí),(a+bi)2=(2+2i)2=22+(2i)2+2×2×2i=8i,
所以“a=b=2”是“(a+bi)2=8i”的充分條件;
當(dāng)(a+bi)2=8i時(shí),a2-b2+2abi=8i,$\left\{\begin{array}{l}{{a}^{2}-^{2}=0}\\{ab=4}\end{array}\right.$,的a=b=2或a=b=-2.
所以“a=b=2”不是“(a+bi)2=8i”的必要條件,
故“a=b=2”是“(a+bi)2=8i”的充分不必要條件.
故選A.

點(diǎn)評 本題考查充分條件和必要條件的判斷,復(fù)數(shù)的運(yùn)算,根據(jù)充分條件和必要條件的定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a1+2a2=1,且a32=4a2•a6
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2a1+log2a2+log2a3+…+log2an,求數(shù)列$\{\frac{1}{b_n}\}$的前n項(xiàng)和;
(3)設(shè)cn=$\frac{{{b_n}•{a_n}}}{n}$,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.本著健康、低碳的生活理念,租用公共自行車的人越來越多.租用公共自行車的收費(fèi)標(biāo)準(zhǔn)是每車每次不超過兩小時(shí)免費(fèi),超過兩小時(shí)的部分每小時(shí)2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).甲乙兩人相互獨(dú)立租車(各租一車一次).設(shè)甲、乙不超過兩小時(shí)還車的概率分別為$\frac{1}{3}$,$\frac{1}{2}$;兩小時(shí)以上且不超過三小時(shí)還車的概率分別為$\frac{1}{3}$,$\frac{1}{4}$;兩人租車時(shí)間都不會(huì)超過四小時(shí).
(1)求出甲、乙所付租車費(fèi)用相同的概率;
(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量X,求隨機(jī)變量X的概率分布和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知AB是圓Γ1:(x-2)2+y2=1的直徑,P為橢圓Γ2:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上一動(dòng)點(diǎn),則$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍是[8,48].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知$B=\frac{π}{4}$,$asinB=\sqrt{3}bcosA$;
(1)求A的大。
(2)若b=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.滄州市第二中學(xué)辯論隊(duì)于2016年12月代表河北省參加第二屆京津中學(xué)生辯論賽,并獲得亞軍,現(xiàn)在辯論隊(duì)由3名男隊(duì)和5名隊(duì)員組成.
(1)學(xué)校為宣傳辯論隊(duì)取得的優(yōu)異成績,需要給全體隊(duì)員排隊(duì)照相,要求3名隊(duì)員互不相鄰,有多少種不同排法?
(2)將8名隊(duì)員分成四個(gè)小組,每個(gè)小組兩人,分別取高一1,2,3,4班四個(gè)班開座談會(huì),有多少種不同的分組方式?
(3)為準(zhǔn)備下次的比賽,現(xiàn)從從8名隊(duì)員中選出4名隊(duì)員做一辨、二辨、三辨、四辨,要求至少有一名男隊(duì)員,有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,a,b,c分別為角A,B,C所對的邊,且三個(gè)內(nèi)角A,B,C滿足A+C=2B.
(1)若b=2,求△ABC的面積的最大值,并判斷取最大值時(shí)三角形的形狀;
(2)若$\frac{1}{cosA}+\frac{1}{cosC}=-\frac{{\sqrt{2}}}{cosB}$,求$cos\frac{A-C}{2}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.按如圖的規(guī)律所拼成的一圖案共有1024個(gè)大小相同的小正三角形“△”或“?”,則該圖案共有( 。
A.16層B.32層C.64層D.128層

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知m∈R,復(fù)數(shù)$z=\frac{{m({m-1})}}{m+1}+({{m^2}+2m-3})i$.
(1)若z是純虛數(shù),求m的值;
(2)當(dāng)m為何值時(shí),z對應(yīng)的點(diǎn)在直線x+y+3=0上?

查看答案和解析>>

同步練習(xí)冊答案