【題目】如圖,在三棱錐中,平面平面,為等邊三角形,,是的中點.
(1)證明:;
(2)若,求二面角平面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)取的中點,連接、,證明平面,從而得出;
(2)證明出平面,可得出、、兩兩垂直,以點為坐標原點,、、所在直線分別為軸、軸、軸建立空間直角坐標系,然后計算出平面、的法向量,利用空間向量法求出二面角平面角的余弦值.
(1)證明:取中點,聯(lián)結(jié)、,
為等邊三角形,為的中點,.
是的中點,為中點,,,.
,平面,
平面,;
(2)由(1)知,,
平面平面,平面平面,平面,
平面,則、、兩兩垂直,
以點為坐標原點,、、所在直線分別為軸、軸、軸建立空間直角坐標系,
則、、、、.
設(shè)平面的法向量為,,.
由,得,令,得,,
所以,平面的一個法向量為.
設(shè)平面的法向量為,,
由,得,取,得,.
所以,平面的一個法向量為.
則.
結(jié)合圖形可知,二面角的平面角為銳角,其余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的長軸長為4,左、右頂點分別為,經(jīng)過點的直線與橢圓相交于不同的兩點(不與點重合).
(Ⅰ)當,且直線 軸時, 求四邊形的面積;
(Ⅱ)設(shè),直線與直線相交于點,求證:三點共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結(jié)論
①AC⊥BD;
②△ACD是等邊三角形;
③AB與平面BCD成60°的角;
④AB與CD所成的角是60°.
其中正確結(jié)論的序號是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,點E是棱的中點,點F是線段上的一個動點.有以下三個命題:
①異面直線與所成的角是定值;
②三棱錐的體積是定值;
③直線與平面所成的角是定值.
其中真命題的個數(shù)是( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個命題:①“若,則,互為倒數(shù)”的逆命題;②“面積相等的三角形全等”的否命題;③“若,則有實數(shù)解”的逆否命題;④“若,則”的逆否命題.其中真命題為________(填寫所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家具廠有方木料90,五合板600,準備加工成書桌和書櫥出售.已知生產(chǎn)第張書桌需要方木料O.l,五合板2,生產(chǎn)每個書櫥而要方木料0.2,五合板1,出售一張方桌可獲利潤80元,出售一個書櫥可獲利潤120元.
(1)如果只安排生產(chǎn)書桌,可獲利潤多少?
(2)怎樣安排生產(chǎn)可使所得利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面 ABCD為矩形,側(cè)面為正三角形,且平面平面 E 為 PD 中點,AD=2.
(1)證明平面AEC丄平面PCD;
(2)若二面角的平面角滿足,求四棱錐 的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com