6.為了得到函數(shù)$y=sin(2x+\frac{π}{3})$的圖象,只需將函數(shù)y=sin2x的圖象上每一點( 。
A.向左平移$\frac{π}{3}$個單位長度B.向左平移$\frac{π}{6}$個單位長度
C.向右平移$\frac{π}{3}$個單位長度D.向右平移$\frac{π}{6}$個單位長度

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:將函數(shù)y=sin2x的圖象上每一點向左平移$\frac{π}{6}$個單位長度,
可得函數(shù)y=sin2(x+$\frac{π}{6}$)=2sin(2x+$\frac{π}{3}$)的圖象,
故選:B.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.某公司2017年元旦晚會現(xiàn)場,為了活躍氣氛,將在晚會節(jié)目表演過程中進行抽獎活動.
(1)現(xiàn)需要從第一排就座的6位嘉賓A、B、C、D、E、F中隨機抽取2人上臺抽獎,求嘉賓A和嘉賓B至少有一人上臺抽獎的概率;
(2)抽獎活動的規(guī)則是:嘉賓通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的隨機數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該嘉賓中獎;若電腦顯示“謝謝”,則不中獎.求該嘉賓中獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,O為坐標原點,P是雙曲線在第一象限上的點,直線PO,PF2分別交雙曲線C左、右支于另一點M,N,若|PF1|=2|PF2|,且∠MF2N=60°,則雙曲線C的離心率為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)$y=\sqrt{3-x}$的定義域為(-∞,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)y=f(t)是某港口水的深度y(米)關(guān)于時間t(時)的函數(shù),其中0≤t≤24.下表是該港口某一天從0時至24時記錄的時間t與水深y的關(guān)系表:
t03691215182124
y57.552.557.552.55
經(jīng)長期觀察,函數(shù)y=f(t)的圖象可以近似地看成函數(shù)y=k+Asin(ωt+φ)的圖象.下面的函數(shù)中,最能近似表示表中數(shù)據(jù)間對應關(guān)系的函數(shù)是( 。
A.$y=5+\frac{5}{2}sin\frac{π}{12}t,t∈[0,24]$B.$y=5+\frac{5}{2}sin(\frac{π}{12}t+\frac{π}{2}),t∈[0,24]$
C.$y=5+\frac{5}{2}sin\frac{π}{6}t,t∈[0,24]$D.$y=5+\frac{5}{2}sin(\frac{π}{6}t+π),t∈[0,24]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知向量$\overrightarrow a=(4,-2)$,$\overrightarrow b=(x,1)$.
(Ⅰ)若 $\overrightarrow a$,$\overrightarrow b$共線,求x的值;
(Ⅱ)若$\overrightarrow a$⊥$\overrightarrow b$,求x的值;
(Ⅲ)當x=2時,求$\overrightarrow a$與$2\overrightarrow b+\overrightarrow a$夾角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知復數(shù)z的實部為a(a<0),虛部為1,模長為2,$\overline{z}$是z的共軛復數(shù),則$\frac{1+\sqrt{3}i}{\overline{z}}$的值為( 。
A.$\frac{\sqrt{3}+i}{2}$B.-$\sqrt{3}$-iC.-$\sqrt{3}$+iD.-$\frac{\sqrt{3}+i}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在四面體ABCD中,AB⊥AD,AB=AD=BC=CD=1,且平面ABD⊥平面BCD,M為AB中點,則線段CM的長為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖所示,在正方體ABCD-A1B1C1D1中,已知M,N分別是BD和AD的中點,則B1M與D1N所成角的余弦值為(  )
A.$\frac{{\sqrt{30}}}{10}$B.$\frac{{\sqrt{30}}}{15}$C.$\frac{{\sqrt{30}}}{30}$D.$\frac{{\sqrt{15}}}{15}$

查看答案和解析>>

同步練習冊答案