分析 對k的符號進(jìn)行討論,利用符合函數(shù)的單調(diào)性及余弦函數(shù)的單調(diào)性列不等式組求出f(x)的減區(qū)間,令區(qū)間$({\frac{π}{4},\frac{π}{3}})$為f(x)單調(diào)減區(qū)間的子集解出k的范圍.
解答 解:當(dāng)k>0時(shí),令2mπ≤kx≤π+2mπ,解得$\frac{2mπ}{k}$≤x≤$\frac{π}{k}$+$\frac{2mπ}{k}$,m∈Z,
∵函數(shù)y=kcos(kx)在區(qū)間$({\frac{π}{4},\frac{π}{3}})$單調(diào)遞減,
∴$\left\{\begin{array}{l}{\frac{π}{4}≥\frac{2mπ}{k}}\\{\frac{π}{3}≤\frac{π}{k}+\frac{2mπ}{k}}\end{array}\right.$,解得$\left\{\begin{array}{l}{k≥8m}\\{k≤3+6m}\end{array}\right.$,m∈Z,∴0<k≤3或8≤k≤9.
當(dāng)k<0時(shí),令-π+2mπ≤-kx≤2mπ,解得$\frac{π}{k}$-$\frac{2mπ}{k}$≤x≤-$\frac{2mπ}{k}$,m∈Z,
∵函數(shù)y=kcos(kx)在區(qū)間$({\frac{π}{4},\frac{π}{3}})$單調(diào)遞減,
∴$\left\{\begin{array}{l}{\frac{π}{4}≥\frac{π}{k}-\frac{2mπ}{k}}\\{\frac{π}{3}≤-\frac{2mπ}{k}}\end{array}\right.$,解得$\left\{\begin{array}{l}{k≤4-8m}\\{k≥-6m}\end{array}\right.$,m∈Z,∴-6≤k≤-4,或k=-12,
綜上,k的取值范圍是[-6,-4]∪(0,3]∪[8,9]∪{-12}.
故答案為:[-6,-4]∪(0,3]∪[8,9]∪{-12}.
點(diǎn)評 本題考查了余弦函數(shù)的圖象與性質(zhì),分類討論思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{ab}$≥$\frac{1}{2}$ | B. | $\frac{1}{a2+b2}$≤$\frac{1}{4}$ | C. | $\sqrt{ab}$≥2 | D. | $\frac{1}{a}$+$\frac{1}$≥1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{85}{225}$ | B. | $\frac{86}{225}$ | C. | $\frac{88}{225}$ | D. | $\frac{89}{225}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com