1.設(shè)Sn為各項(xiàng)不相等的等差數(shù)列an的前n 項(xiàng)和,已知a3a8=3a11,S3=9.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{1}{{{a_n}{a_{n+1}}}}$}的前n 項(xiàng)和Tn

分析 (1)利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.
(2)利用“裂項(xiàng)求和”方法即可得出.

解答 解:(1)設(shè){an}的公差為d,則由題意知$\left\{{\begin{array}{l}{({{a_1}+2d})({{a_1}+7d})=3({{a_1}+10d})}\\{3{a_1}+\frac{3×2}{2}d=9}\end{array}}\right.$…(2分)
解得$\left\{{\begin{array}{l}{d=0}\\{{a_1}=3}\end{array}}\right.$(舍去)或$\left\{{\begin{array}{l}{d=1}\\{{a_1}=2}\end{array}}\right.$,…(4分)
∴an=2+(n-1)×1=n+1…(6分)
(2)∵$\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{{({n+1})({n+2})}}=\frac{1}{n+1}-\frac{1}{n+2}$,…(8分)
∴${T_n}=\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n-1}}}}$…(9分)
=$({\frac{1}{2}-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{5}})+…+({\frac{1}{n+1}-\frac{1}{n+2}})$.  
=$\frac{1}{2}-\frac{1}{n+2}=\frac{n}{{2({n+2})}}$…(12分)

點(diǎn)評(píng) 本題考查了“裂項(xiàng)求和方法”、等差數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知△EAB所在的平面與矩形ABCD所在的平面互相垂直,EA=EB=3,AD=2,∠AEB=60°,則多面體E-ABCD的外接球的表面積為( 。
A.B.C.12πD.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知命題p,q是簡(jiǎn)單命題,則“¬p是假命題”是“p∨q是真命題”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為,點(diǎn)P是橢圓E上的一個(gè)動(dòng)點(diǎn),△PF1F2的周長(zhǎng)為6,且存在點(diǎn)P使得,△PF1F為正三角形.
(1)求橢圓E的方程;
(2)若A,B,C,D是橢圓E上不重合的四個(gè)點(diǎn),AC與BD相交于點(diǎn)F1,且$\overrightarrow{AC}•\overrightarrow{BD}$=0.若AC的斜率為$\sqrt{3}$,求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在如圖所示的幾何體中,平面ACE⊥平面ABCD,四邊形ABCD 為平行四邊形,
∠CAD=90°,EF∥BC,EF=$\frac{1}{2}$BC,AC=$\sqrt{2}$,AE=EC=1.
(1)求證:CE⊥AF;
(2)若二面角E-AC-F 的余弦值為$\frac{{\sqrt{3}}}{3}$,求點(diǎn)D 到平面ACF 的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知曲線C 的參數(shù)方程為$\left\{\begin{array}{l}x=2+\sqrt{5}cosα\\ y=1+\sqrt{5}sinα\end{array}\right.$(α為參數(shù)),以直角坐標(biāo)系原點(diǎn)O 為極點(diǎn),x 軸正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C 的極坐標(biāo)方程;
(Ⅱ)設(shè)l1:θ=$\frac{π}{6}$,l2:θ=$\frac{π}{3}$,若l 1、l2與曲線C 相交于異于原點(diǎn)的兩點(diǎn) A、B,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.六安濱河公園噴泉中央有一個(gè)強(qiáng)力噴水柱,為了測(cè)量噴水柱噴出的水柱的高度,某人在水柱正西方向的A處測(cè)得水柱頂端的仰角為45°,沿A處向南偏東30°前進(jìn)50米到達(dá)點(diǎn)B處,在B處測(cè)得水柱頂端的仰角為30°,則水柱的高度是(  )
A.15mB.30mC.25mD.50m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=|x-a|+|x+5-a|
(1)若不等式f(x)-|x-a|≤2的解集為[-5,-1],求實(shí)數(shù)a的值;
(2)若?x0∈R,使得f(x0)<4m+m2,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知三棱錐的外接球的表面積為25π,該三棱錐的三視圖如圖所示,三個(gè)視圖的外輪廓都是直角三角形,則其側(cè)視圖面積的最大值為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案