分析 利用向量垂直求出x,然后利用向量的數(shù)量積求解$\overrightarrow a$在$\overrightarrow a+\overrightarrow b$上的投影.
解答 截:向量$\overrightarrow a=(x,1)$,$\overrightarrow b=(1,-2)$,且$\overrightarrow a⊥\overrightarrow b$,
可得x-2=0,解得x=2,∴$\overrightarrow{a}$=(2,1).
$\overrightarrow a+\overrightarrow b$=(3,-1).
則$\overrightarrow a$在$\overrightarrow a+\overrightarrow b$上的投影為:$\frac{\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow)}{|\overrightarrow{a}+\overrightarrow|}$=$\frac{6-1}{\sqrt{9+1}}$=$\frac{\sqrt{10}}{2}$.
故答案為:$\frac{{\sqrt{10}}}{2}$.
點(diǎn)評(píng) 本題考查平面向量的數(shù)量積的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=3x-2 | B. | y=$\frac{3}{4}$x+$\frac{1}{4}$ | ||
C. | y=3x-2或y=$\frac{3}{4}$x+$\frac{1}{4}$ | D. | y=3x-2或y=$\frac{3}{4}$x-$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=\frac{1}{e}x-\frac{1}{2}$ | B. | $y=ex-\frac{1}{2}$ | C. | $y=-\frac{1}{e}x+\frac{1}{2}$ | D. | $y=ex+\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
x | 3 | 4 | 5 | 6 | 7 |
y | 4.0 | 2.5 | -0.5 | 0.5 | -2.0 |
A. | 增加1.4個(gè)單位 | B. | 減少1.4個(gè)單位 | C. | 增加1.2個(gè)單位 | D. | 減少1.2個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | c>a>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6π | B. | $\frac{2π}{3}+\sqrt{3}$ | C. | 4π | D. | $2π+\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 32+8π | B. | 32+$\frac{8π}{3}$ | C. | 16+$\frac{8π}{3}$ | D. | 16+8π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com