分析 (1)利用兩角和的正切函數(shù)公式表示出tan(B+C),把tanB和tanC的值代入即可求出tan(B+C)的值,根據(jù)三角形的內(nèi)角和定理及誘導(dǎo)公式得到tanA等于-tan(B+C),進(jìn)而得到tanA的值,結(jié)合A的范圍即可得解;
(2)由已知利用同角三角函數(shù)基本關(guān)系式可求sinB,sinC的值,進(jìn)而利用正弦定理即可得解b的值.
解答 (本題滿分為10分)
解:(1)因為:tanB=2,tanC=3,tan(B+C)=$\frac{tanB+tanC}{1-tanBtanC}$=$\frac{2+3}{1-2×3}$=-1,…(3分)
因為:A=180°-B-C,(4分)
所以:tanA=tan(180°-(B+C))=-tan(B+C)=1…(5分)
因為:A∈(0,π),
所以:A=$\frac{π}{4}$.
(2)因為:c=3,tanB=2,tanC=3.
所以:sinB=$\frac{2\sqrt{5}}{5}$,sinC=$\frac{3\sqrt{10}}{10}$,
所以由正弦定理可得:b=$\frac{csinB}{sinC}$=$\frac{3×\frac{2\sqrt{5}}{5}}{\frac{3\sqrt{10}}{10}}$=2$\sqrt{2}$…(10分)
點評 本題主要考查了兩角和的正切函數(shù)公式,三角形的內(nèi)角和定理,誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式,正弦定理在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2) | B. | ( $\sqrt{2}$,2) | C. | (2,4) | D. | (2,2 $\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2014}$-1 | B. | $\sqrt{2015}$-1 | C. | $\sqrt{2016}$-1 | D. | $\sqrt{2017}$-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com