【題目】如圖,在三棱錐中,平面,,為的中點,為的中點,點在線段上,,.
(Ⅰ)求證:平面;
(Ⅱ)若,求證:平面;
(Ⅲ)求與平面所成角的正弦值.
【答案】(Ⅰ)證明見解析;(Ⅱ)證明見解析;(Ⅲ).
【解析】
試題分析:(Ⅰ)由平面可推出,再由,可證平面,從而得出,由及為的中點,推出,即可得證平面;(Ⅱ)依題意,平面,,以為原點,分別以的方向為軸、軸、軸的正方向建立空間直角坐標(biāo)系,得出,,,,,,,由為平面的一個法向量,再根據(jù),即可得出,從而得證;(Ⅲ) 求出平面的一個法向量,設(shè)與平面所成角為,根據(jù),即可求出與平面所成角的正弦值.
試題解析:(Ⅰ)證明:∵平面,平面,
∴.
∵,,
∴平面.
∵平面,
∴.
∵,為的中點,
∴.
∵,
∴平面.
(Ⅱ)證明:依題意,平面,,如圖,
以為原點,分別以的方向為軸、軸、軸的正方向建立空間直角坐標(biāo)系.
可得,,,,,,.
∵平面的一個法向量,,
∴,即.
∵平面,
∴平面.
(Ⅲ)解:設(shè)平面的法向量為,則,.
由,,得
令,得,,即.
設(shè)與平面所成角為,
∵,
∴.
∴與平面所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線.
(1)求證:無論取何值,直線始終經(jīng)過第一象限;
(2)若直線與軸正半軸交于點,與軸正半軸交于點,為坐標(biāo)原點,設(shè)的面積為,求的最小值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且當(dāng)時,的最小值為2,
(1)求的值,并求的單調(diào)遞增區(qū)間.
(2)若將函數(shù)的圖象上的點的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的,再將所得的圖象向右平移個單位長度,得到函數(shù)的圖象,求方程在區(qū)間上所有根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為時,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)(題文)已知橢圓的左右頂點分別為,,右焦點的坐標(biāo)為,點坐標(biāo)為,且直線軸,過點作直線與橢圓交于,兩點(,在第一象限且點在點的上方),直線與交于點,連接.
(1)求橢圓的方程;
(2)設(shè)直線的斜率為,直線的斜率為,問:的斜率乘積是否為定值,若是求出該定值,若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線過點,其參數(shù)方程為 (為參數(shù),),以為極點,軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)求已知曲線和曲線交于,兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是上的奇函數(shù).
(1)求的值;
(2)證明在上單調(diào)遞減;
(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù),).在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線.
(1)說明是哪種曲線,并將的方程化為極坐標(biāo)方程;
(2)已知與的交于,兩點,且過極點,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com