14.已知函數(shù)f(x)=cosx•sin$({x+\frac{π}{3}})$-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)單調(diào)增區(qū)間;
(3)求f(x)對稱中心.

分析 (1)利用三角函數(shù)恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性即可得答案;
(2)由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,即可得到f(x)的單調(diào)增區(qū)間;
(3)由圖象的對稱性即可得到f(x)對稱中心.

解答 解:(1)∵函數(shù)f(x)=cosx•sin$({x+\frac{π}{3}})$-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$=cosx•($\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$
=$\frac{1}{4}$sin2x-$\frac{\sqrt{3}}{2}$cos2x+$\frac{\sqrt{3}}{4}$=$\frac{1}{4}$sin2x-$\frac{\sqrt{3}}{2}$•$\frac{1+cos2x}{2}$+$\frac{\sqrt{3}}{4}$=$\frac{1}{4}$sin2x-$\frac{\sqrt{3}}{4}$cos2x=$\frac{1}{2}$sin(2x-$\frac{π}{3}$),
∴f(x)的最小正周期為$\frac{2π}{2}$═π;
(2)由(1)可知:f(x)=$\frac{1}{2}$sin(2x-$\frac{π}{3}$),
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,解得f(x)的單調(diào)遞增區(qū)間為:[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z.
(3)令2x-$\frac{π}{3}$=kπ,求得x=$\frac{kπ}{2}+\frac{π}{6}$,
∴f(x)對稱中心為($\frac{kπ}{2}+\frac{π}{6}$,0).

點評 本題主要考查了三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的周期性,單調(diào)性以及圖象的對稱性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知a=log30.2,b=30.2,c=0.30.2,則a,b,c三者的大小關(guān)系是(  )
A.a>b>cB.b>a>cC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ln($\frac{1}{2}$+$\frac{1}{2}$ax)+x2-ax(a為常數(shù),a>0).
(Ⅰ)當(dāng)a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對任意的a∈(1,2),總存在x0∈[$\frac{1}{2}$,1],使不等式f(x0)>m(a2+2a-3)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在正方體ABCD-A1B1C1D1中,設(shè)點P在線段CC1上,直線DP與平面A1BD所成的角為α,則sinα的取值范圍是( 。
A.[$\frac{\sqrt{3}}{3}$,$\frac{2\sqrt{2}}{3}$]B.[$\frac{\sqrt{6}}{3}$,$\frac{2\sqrt{2}}{3}$]C.[$\frac{2\sqrt{2}}{3}$,1]D.[$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{6}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.點P是雙曲線$\frac{x^2}{4}-\frac{y^2}{12}=1$上的點,F(xiàn)1,F(xiàn)2分別是雙曲線的左右焦點,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,則|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=( 。
A.48B.32C.16D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖所示,在?ABCD中,AE:EB=1:2,若S△AEF=6cm2,則S△CDF為( 。
A.54 cm2B.24 cm2C.18 cm2D.12 cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知銳角△ABC的面積為1,正方形DEFG是△ABC的一個內(nèi)接三角形,
DG∥BC,求正方形DEFG面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.過拋物線C:y2=8x的焦點F作直線l交拋物線C于A,B兩點,若A到拋物線的準線的距離為6,則|AB|=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={x||x+1|<3},集合B={x|x2-x-6≤0},則A∩B=( 。
A.{x|2≤x≤3}B.{x|-2≤x≤3}C.{x|-2≤x<2}D.{x|-4<x≤3}

查看答案和解析>>

同步練習(xí)冊答案