【題目】已知函數(shù)

1,求函數(shù)圖象在處的切線方程;

2,試討論方程的實(shí)數(shù)解的個(gè)數(shù);

3當(dāng)時(shí),若對(duì)于任意的,都存在,使得,求滿足條件的正整數(shù)的取值的集合

【答案】1;2詳見(jiàn)解析;3

【解析】

試題分析:1去絕對(duì)值號(hào)后求導(dǎo),利用導(dǎo)數(shù)的幾何意義即可求解;2對(duì)的取值進(jìn)行分類(lèi)討論,去絕對(duì)值號(hào)后即可求解;3分析題意可知問(wèn)題等價(jià)于函數(shù)的值域是的子集,從而即可建立關(guān)于的不等式,即可求解

試題解析1當(dāng),時(shí),,從而,而,函數(shù),圖象在處的切線方程為:,即;2即為,從而,此方程等價(jià)于,

當(dāng)時(shí),方程有兩個(gè)不同的解,;

當(dāng)時(shí),方程有三個(gè)不同的解,,

當(dāng)時(shí),方程有兩個(gè)不同的解,;

3當(dāng)時(shí),,

函數(shù)是增函數(shù),且

當(dāng)時(shí),,,

當(dāng)時(shí),,

對(duì)任意的,都存在,使得,

,從而

,即,即,

,顯然滿足,而時(shí),均不滿足,

滿足條件的正整數(shù)的取值的集合為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐PABCD中,底面是邊長(zhǎng)為a的正方形,側(cè)棱PDa,PAPCa

(1)求證:PD⊥平面ABCD;

(2)求證:平面PAC⊥平面PBD;

(3)求二面角PACD的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),橢圓的離心率為,是橢圓的焦點(diǎn),直線的斜率為,為坐標(biāo)原點(diǎn).

()的方程;

)設(shè)過(guò)點(diǎn)的直線相交于兩點(diǎn),當(dāng)的面積最大時(shí),求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn1.

(1)求數(shù)列{bn}的通項(xiàng)公式;

(2)cn,Tn是數(shù)列{cn}的前n項(xiàng)和,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中, , ,四邊形為矩形,平面平面,

1)求證: 平面

2)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的最小值為0,其中,設(shè)

1的值;

2對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍;

3討論方程上根的個(gè)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1處取得極小值,求的值;

2上恒成立,求的取值范圍;

3求證:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知過(guò)點(diǎn)的直線的參數(shù)方程是為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程式為.

)求直線的普通方程和曲線的直角坐標(biāo)方程;

)若直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解初三學(xué)生女生身高情況,某中學(xué)對(duì)初三女生身高進(jìn)行了一次測(cè)量,所得數(shù)據(jù)整理后列出了頻率分布表如下:

組 別

頻數(shù)

頻率

14551495

1

002

14951535

4

008

15351575

20

040

15751615

15

030

16151655

8

016

16551695

m

n

合 計(jì)

M

N

1)求出表中所表示的數(shù)分別是多少?

2)畫(huà)出頻率分布直方圖.

3)全體女生中身高在哪組范圍內(nèi)的人數(shù)最多?由直方圖確定此組數(shù)據(jù)中位數(shù)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案