分析 (1)設(shè){an}為公差為d的等差數(shù)列,由條件運用等差數(shù)列的通項公式可得方程,解方程可得首項和公差,即可得到所求通項;
(2)求出${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{2n•2(n+1)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),由數(shù)列的求和方法:裂項相消求和,計算即可得到所求和.
解答 解:(1)設(shè){an}為公差為d的等差數(shù)列,
由a1+a3=8,a2+a4=12,
可得2a1+2d=8,2a1+4d=12,
解得a1=d=2,
即有an=a1+(n-1)d=2n,n∈N*;
(2)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{2n•2(n+1)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),
數(shù)列{bn}的前n項和為$\frac{1}{4}$(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=$\frac{1}{4}$(1-$\frac{1}{n+1}$)=$\frac{n}{4(n+1)}$.
點評 本題考查等差數(shù)列的通項公式的運用,以及數(shù)列的求和方法:裂項相消求和,考查化簡整理的運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{3}{8}$ | D. | $\frac{3}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com