【題目】一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.
(1)從袋中隨機取出兩個球,求取出的球的編號之和不大于4的概率.
(2)先從袋中隨機取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n,求n<m+2的概率.
【答案】(1);(2).
【解析】試題分析:
(1)從袋中隨機抽取兩個球,可能的結果有6種,而取出的球的編號之和不大于4的事件有兩個,1和2,1和3,兩種情況,求比值得到結果.
(2)有放回的取球,根據分步計數原理可知有16種結果,滿足條件的比較多不好列舉,可以首先考慮它的對立事件再來計算它的概率.
試題解析:
(1)從袋子中隨機取兩個球,其一切可能的結果組成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6個,從袋中隨機取出的球的編號之和不大于4的事件共有1和2,1和3兩個.
因此所求事件的概率為.
(2)先從袋中隨機取一個球,記下編號為m,放回后,在從袋中隨機取一個球,記下編號為n,其中一切可能的結果(m,n)有:(1,1)(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1)(3, 2),(3,3)(3,4),(4,1),(4,2),(4,3),(4,4),共16個.
所有滿足條件n≥m+2的事件為(1,3)(1,4)(2,4),共3個,
所以滿足條件n≥m+2的事件的概率為P1=.
故滿足條件n<m+2的事件的概率為1-P1=1-=.
科目:高中數學 來源: 題型:
【題目】“真人秀”熱潮在我國愈演愈烈,為了了解學生是否喜歡某“真人秀”節(jié)目,在某中學隨機調查了110名學生,得到如下列聯(lián)表:
男 | 女 | 總計 | |
喜歡 | 40 | 20 | 60 |
不喜歡 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由算得.
附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
參照附表,得到的正確結論是( )
A. 在犯錯誤的概率不超過的前提下,認為“喜歡該節(jié)目與性別有關”
B. 在犯錯誤的概率不超過的前提下,認為“喜歡該節(jié)目與性別無關”
C. 有以上的把握認為“喜歡該節(jié)目與性別有關”
D. 有
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓經過點, ,并且直線平分圓.
(1)求圓的方程;
(2)若直線與圓交于兩點,是否存在直線,使得(為坐標原點),若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨機抽取了40輛汽車在經過路段上某點是的車速(),現(xiàn)將其分成六段:,
后得到如圖所示的頻率分布直方圖.
(I)現(xiàn)有某汽車途經該點,則其速度低于80的概率約是多少?
(II)根據頻率分布直方圖,抽取的40輛汽車經過該點的平均速度是多少?
(III)在抽取的40輛汽車且速度在()內的汽車中任取2輛,求這2輛車車速都在()內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“珠算之父”程大為是我國明代偉大數學家,他的應用數學巨著《算法統(tǒng)綜》的問世,標志著我國的算法由籌算到珠算轉變的完成,程大位在《算法統(tǒng)綜》中常以詩歌的形式呈現(xiàn)數學問題,其中有一首“竹筒容米”問題:“家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)三升九,上稍四節(jié)儲三升,唯有中間兩節(jié)竹,要將米數次第盛,若有先生能算法,也教算得到天明”(【注】三升九:3.9升,次第盛;盛米容積依次相差同一數量.)用你所學的數學知識求得中間兩節(jié)的容積為( )
A. 升 B. 升 C. 升 D. 升
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】長時間用手機上網嚴重影響著學生的身體健康,某校為了解兩班學生手機上網的時長,分別從這兩個班中隨機抽取5名同學進行調查,將他們平均每周手機上網的時長作為樣本,繪制成莖葉圖如圖所示(圖中莖葉表示十位數字,葉表示個位數字).
(1)分別求出圖中所給兩組樣本數據的平均值,并據此估計,哪個班的學生平均上網時間較長;
(2)從班的樣本數據中隨機抽取一個不超過19的數據記為,從班的樣本數據中隨機抽取一個不超過21的數據記為,求的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《續(xù)古摘奇算法》(楊輝)一書中有關于三階幻方的問題:將1,2,3,4,5,6,7,8,9分別填入的方格中,使得每一行,每一列及對角線上的三個數的和都相等,我們規(guī)定:只要兩個幻方的對應位置(如每行第一列的方格)中的數字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個數是( )
8 | 3 | 4 |
1 | 5 | 9 |
6 | 7 | 2 |
A. 9 B. 8 C. 6 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知以為圓心的圓及其上一點.
(1)是否存在直線與圓有兩個交點,并且,若有,求此直線方程,若沒有,請說明理由;
(2)設點滿足:存在圓上的兩點和使得,求實數的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com