2.設f(x)=2sin(ωx+φ)-m,恒有f(x+$\frac{π}{2}$)=f(-x)成立,且f($\frac{π}{4}$)=-2,則實數(shù)m的值為( 。
A.±2B.±4C.-4或0D.0或4

分析 用-x替換x代入f(x+$\frac{π}{2}$)=f(-x)可得f($\frac{π}{2}$-x)=f(x),求出f(x)的對稱軸,由題意和正弦函數(shù)對稱軸的特點列出方程,求出m的值.

解答 解:∵f(x)恒有f(x+$\frac{π}{2}$)=f(-x),用-x替換x得:
f($\frac{π}{2}$-x)=f(x),
∴f(x)=2sin(ωx+φ)-m的圖象關于直線x=$\frac{π}{4}$對稱,
∴f(x)max=f($\frac{π}{4}$)=2-m或f(x)min=f($\frac{π}{4}$)=-2-m,
∵f($\frac{π}{4}$)=-2,
∴2-m=-2或-2-m=-2,解得m=4或m=0,
故選D.

點評 本題考查正弦函數(shù)對稱軸的特點,求出f(x)的圖象關于直線x=$\frac{π}{4}$對稱是關鍵,考查分析、化簡與變形能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.設常數(shù)c≠0,函數(shù)f(x)=$\left\{\begin{array}{l}{cx+1,x∈(-∞,c)}\\{{2}^{-\frac{x}{{c}^{2}}}+1,x∈[c,+∞)}\end{array}\right.$,若f(c2)=$\frac{9}{8}$
(1)求常數(shù)c的值;
(2)解不等式f(x)<$\frac{\sqrt{2}}{8}$+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知集合{a,b,c}={1,2,3},①a≠2;②a=3;③b=1;④c=3.若①②③④中有且僅有一個是正確的,則a-b-c的值是-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知a,b∈R,i是虛數(shù)單位,若a+i與3-bi互為共扼復數(shù),則(a-bi)2=( 。
A.10+6iB.8+6iC.8-6iD.10-6i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設m、n是不同的直線,α、β、γ是不同的平面,有以下四個命題:
①若α∥β,α∥γ,則β∥γ;
②若α⊥β,m∥α,則m⊥β;           
③若m⊥α,m∥β,則α⊥β;       
④若m∥n,m∥α,則n∥α.
其中真命題的序號是①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知sin(α-2β)=-$\frac{2}{3}$,cos(2α-β)=$\frac{1}{4}$,其中0<α<$\frac{π}{4}$,$\frac{π}{2}$<β<$\frac{3π}{4}$,則cos(α+β)=$\frac{2\sqrt{15}-\sqrt{5}}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.5位大學生站在一排照相.
(1)若其中的甲乙兩位同學必須相等,問有多少種不同的排法?
(2)若上述5位大學生中有3位女大學生和2位男大學生,則這兩位男大學生不相鄰的排法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.直線L的方程為-Ax-By+C=0,若直線L過原點和一、三象限,則( 。
A.C=0,B>0B.A>0,B>0,C=0C.AB<0,C=0D.C=0,AB>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}$(t為參數(shù)),曲線C的極坐標方程是ρ=$\frac{sinθ}{{{{cos}^2}θ}}$,以極點為原點,極軸為x軸正方向建立直角坐標系,點M(-1,0),直線l與曲線C交于A、B兩點.
(Ⅰ)寫出直線l的極坐標方程與曲線C的普通方程;
(Ⅱ)求線段MA、MB長度之積MA•MB的值.

查看答案和解析>>

同步練習冊答案