雙曲線的離心率等于2,且與橢圓有相同的焦點,求此雙曲線的標準方程.

解析試題分析:∵ 橢圓的焦點坐標為(-4,0)和(4,0),
則可設(shè)雙曲線方程為(a>0,b>0),
∵ c=4,又雙曲線的離心率等于2,即,∴ a=2.
=12.故所求雙曲線方程為
考點:本題考查雙曲線的基本性質(zhì)和標準方程。
點評:解答的關(guān)鍵在于學生對雙曲線基礎(chǔ)知識的把握,要注意橢圓與雙曲線中a、b、c關(guān)系式的不同,屬于基礎(chǔ)題型。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)雙曲線C與橢圓有相同的焦點,直線y=的一條漸近線.
(Ⅰ)求雙曲線的方程;
(Ⅱ)過點(0,4)的直線,交雙曲線于A,B兩點,交x軸于點(點與的頂點不重合)。當 =,且時,求點的坐標

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
設(shè)雙曲線與直線交于兩個不同的點,求雙曲線的離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)過橢圓的一個焦點的直線交橢圓于、兩點,求面積的最大值.(為坐標原點)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.
(1)若直線的斜率之積為,求橢圓的離心率;
(2)對于由(1)得到的橢圓,過點的直線軸于點,交軸于點,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線的中心在原點,焦點在坐標軸上,離心率為,且過點(4,-)(1)求雙曲線的方程.(2)若點M(3,m)在雙曲線上,求證:.(3)若點A,B在雙曲線上,點N(3,1)恰好是AB的中點,求直線AB的方程(12分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為雙曲線的左、右焦點.
(Ⅰ)若點為雙曲線與圓的一個交點,且滿足,求此雙曲線的離心率;
(Ⅱ)設(shè)雙曲線的漸近線方程為,到漸近線的距離是,過的直線交雙曲線于A,B兩點,且以AB為直徑的圓與軸相切,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知點的坐標分別為,直線相交于點,且它們的斜率之積是,試討論點的軌跡是什么。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分) 如圖,已知拋物線與坐標軸分別交于A、B、C三點,過坐標原點O的直線與拋物線交于M、N兩點.分別過點C、D作平行于軸的直線、.(1)求拋物線對應(yīng)的二次函數(shù)的解析式;(2)求證:以O(shè)N為直徑的圓與直線相切;(3)求線段MN的長(用表示),并證明M、N兩點到直線的距離之和等于線段MN的長.

查看答案和解析>>

同步練習冊答案