14.如圖,四邊形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC$\stackrel{∥}{=}$$\frac{1}{2}$AD,BE$\stackrel{∥}{=}$$\frac{1}{2}$FA,M為FD的中點.
(1)證明:CM∥面ABEF;
(2)C,D,F(xiàn),E四點是否共面?為什么?

分析 (1)設(shè)G為AF的中點,連接BG,GM,CM,推導(dǎo)出四邊形BCMG為平行四邊形,從而CM∥BG,由此能證明CM∥平面ABEF.
(2)推導(dǎo)出四邊形BEFG為平行四邊形,從而EF∥BG,進而EF∥CM,由此得到C,D,F(xiàn),E四點共面.

解答 證明:(1)設(shè)G為AF的中點,連接BG,GM,CM,
由已知FG=GA,F(xiàn)M=MD,可得GM$\underset{∥}{=}$$\frac{1}{2}$AD,BC$\underset{∥}{=}$$\frac{1}{2}$AD,
∴GM$\underset{∥}{=}$BC,
∴四邊形BCMG為平行四邊形,∴CM∥BG,
∵BG?ABEF,CM?面ABEF,
∴CM∥平面ABEF.
解:(2)由BE$\underset{∥}{=}$$\frac{1}{2}$FA,G為FA中點知,BE$\underset{∥}{=}$FG,
∴四邊形BEFG為平行四邊形,∴EF∥BG,
由(1)知BG$\underset{∥}{=}$CM,∴EF∥CM,∴EF與CM共面.
又D∈FM,∴C,D,F(xiàn),E四點共面.

點評 本題考查線面平行的證明,考查四點共面的判斷,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如果lgx-lgy=-1,那么$\frac{x}{y}$的值是( 。
A.10B.$\frac{1}{10}$C.100D.$\frac{1}{100}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知集合A={-2,1,3,6},B={x|-2<x<4},則A∩B={1,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}前n項的和為Sn,且滿足a1=23,a2=-9,an+2=an+6×(-1)n+1-2.n∈N*
(1)求數(shù)列{an}的通項公式;
(2)求當Sn最大時n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知圓C:(x-1)2+(y-2)2=4.
(1)求直線2x-y+4=0被圓C所截得的弦長;
(2)求過點M(3,1)的圓C的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2${cos^2}x+sin({\frac{7π}{6}-2x})-1({x∈R})$;
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c,已知函數(shù)f(x)的圖象經(jīng)過點$({A,\frac{1}{2}})$,若${\overrightarrow{AB}^2}-\overrightarrow{AC}•\overrightarrow{CB}-\overrightarrow{BC}$=4,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知點H在圓D:(x-2)2+(y+3)2=32上運動,點P的坐標為(-6,3),線段PH的中點為M.
(1)求點M的軌跡方程;
(2)平面內(nèi)是否存在定點A(a,b)(a≠0),使|MO|=λ|MA|(λ≠1常數(shù)),若存在,求出A的坐標及λ的值;若不存在,說明理由;
(3)若直線y=kx與M的軌跡交于B、C兩點,點N(0,t)使NB⊥NC,求實數(shù)t的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義域為R的奇函數(shù)f(x)滿足f(4-x)+f(x)=0,當-2<x<0時,f(x)=2x,則f(log220)=(  )
A.$-\frac{5}{4}$B.$-\frac{4}{5}$C.$\frac{4}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2m2x2+4mx-3lnx,其中m∈R
(1)若x=1是f(x)的極值點,求m的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

同步練習(xí)冊答案