5.在直角坐標(biāo)系中xOy中,曲線E的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出曲線E的普通方程和極坐標(biāo)方程;
(2)若直線l與曲線E相交于點(diǎn)A、B兩點(diǎn),且OA⊥OB,求證:$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$為定值,并求出這個定值.

分析 (1)曲線E的參數(shù)方程消去參數(shù),能求出曲線E的普通方程,進(jìn)而能求出曲線E的極坐標(biāo)方程.
(2)不妨設(shè)設(shè)點(diǎn)A,B的極坐標(biāo)分別為A(ρ1,θ),B(${ρ}_{2},θ+\frac{π}{2}$),從而得到$\left\{\begin{array}{l}{\frac{1}{{{ρ}_{1}}^{2}}=\frac{1}{4}co{s}^{2}θ+\frac{1}{3}si{n}^{2}θ}\\{\frac{1}{{{ρ}_{2}}^{2}}=\frac{1}{4}si{n}^{2}θ+\frac{1}{3}co{s}^{2}θ}\end{array}\right.$,由此能證明$\frac{1}{|OA{|}^{2}}+\frac{1}{|OB{|}^{2}}=\frac{7}{12}$(定值).

解答 解:(1)∵曲線E的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α為參數(shù)),
∴消去參數(shù)得曲線E的普通方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,
∴曲線E的極坐標(biāo)方程為${ρ}^{2}(\frac{1}{4}co{s}^{2}θ+\frac{1}{3}si{n}^{2}θ)=1$,
∴所求的極坐標(biāo)方程為3ρ2cos2θ+4ρ2sin2θ=12.
(2)證明:不妨設(shè)設(shè)點(diǎn)A,B的極坐標(biāo)分別為A(ρ1,θ),B(${ρ}_{2},θ+\frac{π}{2}$),
則$\left\{\begin{array}{l}{\frac{1}{4}({ρ}_{1}cosθ)^{2}+\frac{1}{3}({ρ}_{1}sinθ)=1}\\{\frac{1}{4}({ρ}_{2}cos(θ+\frac{π}{2}))^{2}+\frac{1}{3}({ρ}_{2}sin(θ+\frac{π}{2}))^{2}=1}\end{array}\right.$,
即$\left\{\begin{array}{l}{\frac{1}{{{ρ}_{1}}^{2}}=\frac{1}{4}co{s}^{2}θ+\frac{1}{3}si{n}^{2}θ}\\{\frac{1}{{{ρ}_{2}}^{2}}=\frac{1}{4}si{n}^{2}θ+\frac{1}{3}co{s}^{2}θ}\end{array}\right.$,
∴$\frac{1}{{{ρ}_{1}}^{2}}+\frac{1}{{{ρ}_{2}}^{2}}$=$\frac{7}{12}$,即$\frac{1}{|OA{|}^{2}}+\frac{1}{|OB{|}^{2}}=\frac{7}{12}$(定值).

點(diǎn)評 本題考查參數(shù)方程、普通方程、極坐標(biāo)方程的互化,考查代數(shù)式和為定值的證明,是中檔題,解題時要認(rèn)真審題,注意普通方程、極坐標(biāo)方程的互化公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx+ax.
(1)若函數(shù)f(x)在x=1處的切線方程為y=2x+m,求實(shí)數(shù)a和m的值;
(2)若函數(shù)f(x)在定義域內(nèi)有兩個不同的零點(diǎn)x1,x2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3+\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=2$\sqrt{5}$sinθ.
(I)求圓C的直角坐標(biāo)方程;
(II)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(3,$\sqrt{5}$),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)$f(x)=\sqrt{2}sinx(cosx+sinx)-\frac{{\sqrt{2}}}{2}$在區(qū)間$[{0,\frac{π}{2}}]$上的最小值是-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.下列函數(shù)中,哪些是互為反函數(shù)?
(1)y=x+1;
(2)y=x3;
(3)y=$\root{3}{x}$;
(4)y=x-1;
(5)y=4x;
(6)y=$\frac{x}{4}$;
(7)y=$\frac{1}{x}$+1;
(8)y=$\frac{1}{x-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2cosθ,過點(diǎn)p(-3,-5)的直線$l:\left\{{\begin{array}{l}{x=-3+\frac{{\sqrt{2}}}{2}t}\\{y=-5+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t為參數(shù))與曲線C相交于點(diǎn)M,N兩點(diǎn).
(1)求曲線C的平面直角坐標(biāo)系方程和直線l的普通方程;
(2)求$\frac{1}{{|{PM}|}}+\frac{1}{{|{PN}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一條直線和兩條異面直線中的一條平行,則它和另一條的位置關(guān)系是(  )
A.異面B.平行C.相交D.相交或異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2e-ax,其中a>0.(e是自然對數(shù)的底數(shù),e=2.71828…)
(I)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求f(x)在[1,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊答案