若二次函數(shù)f(x)=x2-(a-1)x+5在區(qū)間(
1
2
,1)上是增函數(shù),求a的取值范圍.
考點(diǎn):二次函數(shù)的性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出函數(shù)的對(duì)稱(chēng)軸,根據(jù)二次函數(shù)的性質(zhì)得不等式,解出即可.
解答: 二次函數(shù)f(x)=x2-(a-1)x+5的對(duì)稱(chēng)軸為x=
a-1
2
,開(kāi)口向上,
又二次函數(shù)f(x)在區(qū)間(
1
2
,1)上為增函數(shù),
a-1
2
1
2
,解得a≤2,
∴a的范圍是(-∞,2].
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì),函數(shù)的單調(diào)性,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

同時(shí)投擲大小不同的兩顆骰子,所得點(diǎn)數(shù)之和是5的概率是( 。
A、
1
4
B、
1
6
C、
1
9
D、
1
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知當(dāng)a∈R時(shí),|2x+3|=ax+b恒有實(shí)數(shù)解.求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)镽,且xf′(x)-f(x)>0對(duì)于?x∈R恒成立,若a>b>0,則下列不等式肯定成立的是(  )
A、af(a)>bf(b)
B、af(a)<bf(b)
C、bf(a)<af(b)
D、bf(a)>af(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿(mǎn)足:
①定義域?yàn)镽;
②?x∈R,有f(x+2)=2f(x);
③當(dāng)x∈(0,2)時(shí),f(x)=2-|2x-2|,設(shè)ρ(x)=f(x)-log2|x|(x∈(-8,0)∪(0,8)).
根據(jù)以上信息,可以得到函數(shù)ρ(x)的零點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義域在[-1,1]的奇函數(shù),且是增函數(shù),解不等式f(
x-1
2
)-f(
1
4-x
)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在(-1,1)上的單調(diào)遞減函數(shù),且f(a-2)<(1-a),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若{an}為等差數(shù)列,Sn為其前n項(xiàng)和,若a1>0,d<0,S4=S10,則Sn<0成立的最小的自然數(shù)n為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
C
0
n
+
C
1
n
+22
C
2
n
+…+n2
C
n
n
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案