A. | 2 | B. | $\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | 3 |
分析 由已知得$\overrightarrow{PA}$=$2\overrightarrow{AB}$=$λ\overrightarrow{PB}$,由此利用數(shù)形結(jié)合思想能求出結(jié)果.
解答 解:∵平面上四個點P,A,B,C滿足$\overrightarrow{PC}$-$\overrightarrow{AC}$=2$\overrightarrow{AB}$,且$\overrightarrow{PA}$=λ$\overrightarrow{PB}$,
∴$\overrightarrow{PC}$-$\overrightarrow{AC}$=$\overrightarrow{PC}+\overrightarrow{CA}$=$\overrightarrow{PA}$=$2\overrightarrow{AB}$=$λ\overrightarrow{PB}$,
作出圖形,結(jié)合圖形,得:
∴$λ=\frac{2}{3}$.
故選:B.
點評 本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意平面向量的性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{19}{32}$ | B. | $\frac{9}{16}$ | C. | $\frac{5}{8}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ¬p:?x∉(0,+∞),lnx≤x-1 | B. | ¬p:?x∈(0,+∞),lnx≤x-1 | ||
C. | ¬p:?x∉(0,+∞),lnx≥x-1 | D. | ¬p:?x∈(0,+∞),lnx≤x-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12$\sqrt{2}$ | B. | 12 | C. | 14 | D. | 14$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com