分析 Sn=-an-($\frac{1}{2}$)n-1+2(n∈N*),n=1時,解得a1.n≥2時,an=Sn-Sn-1,化為:2nan-2n-1an-1=1,利用等差數列的通項公式可得an=$\frac{n}{{2}^{n}}$.代入an(cn-3n)=(-1)n-1λn(λ為非零常數,n∈N*),化為:cn=3n+(-1)n-1λ•2n.由于存在整數λ,使得對任意n∈N*,都有cn+1>cn,化為:$(\frac{3}{2})^{n-1}$+(-1)nλ>0,對n分類討論,利用數列的單調性即可得出..
解答 解:∵Sn=-an-($\frac{1}{2}$)n-1+2(n∈N*),
∴a1=S1=-a1-1+2,解得a1=$\frac{1}{2}$.
∴n≥2時,an=Sn-Sn-1=-an-($\frac{1}{2}$)n-1+2-$[-{a}_{n-1}-(\frac{1}{2})^{n-2}+2]$,
化為:2an=an-1+$(\frac{1}{2})^{n-1}$,
變形為:2nan-2n-1an-1=1,
∴數列{2nan}是等差數列,首項為1,公差為1.
∴2nan=1+(n-1)=n,
∴an=$\frac{n}{{2}^{n}}$.
∵an(cn-3n)=(-1)n-1λn(λ為非零常數,n∈N*),
∴$\frac{n}{{2}^{n}}$(cn-3n)=(-1)n-1λn,
∴cn=3n+(-1)n-1λ•2n,
∵存在整數λ,使得對任意n∈N*,都有cn+1>cn,
∴3n+1+(-1)nλ•2n+1>3n+(-1)n-1λ•2n,
化為:$(\frac{3}{2})^{n-1}$+(-1)nλ>0,
n=2k-1(k∈N*)時,λ<$(\frac{3}{2})^{2k-2}$.
n=2k時,λ>-$(\frac{3}{2})^{2k-1}$.
∴-$\frac{3}{2}$<λ<1.∵λ為非0整數.則λ=-1.
故答案為:-1.
點評 本題考查了數列遞推關系、等差數列的通項公式、不等式的解法、數列的單調性,考查了分類討論方法、推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | $\frac{3}{2}$ | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中數學 來源:2017屆河北滄州市高三9月聯(lián)考數學(理)試卷(解析版) 題型:填空題
在一次連環(huán)交通事故中,只有一個人需要負主要責任,但在警察詢問時,甲說:“主要責任在乙”;乙說:“丙應負主要責任”;丙說“甲說的對”;丁說:“反正我沒有責任”.四人中只有一個人說的是真話,則該事故中需要負主要責任的人是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$<a<1 | B. | $\frac{1}{2}$≤a<1 | C. | a>1或$a=\frac{1}{2}$ | D. | $a=\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 向左平移$\frac{π}{3}$個單位 | B. | 向右平移$\frac{π}{3}$個單位 | ||
C. | 向左平移$\frac{π}{6}$個單位 | D. | 向右平移$\frac{π}{6}$個單位 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com