10.已知函數(shù)f(x)=x-1+aex
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)求f(x)的極值;
(3)當(dāng)a=1時(shí),曲線y=f(x)與直線y=kx-1沒有公共點(diǎn),求k的取值范圍.

分析 (1)求導(dǎo),由題意可知f′(1)=0,即可求得a的值;
(2)由(1)可知:分類討論,根據(jù)導(dǎo)數(shù)與函數(shù)的單調(diào)性及極值的關(guān)系,即可求得f(x)的極值;
(3)由題意可知g(x)=(1-k)x+ex=0無實(shí)數(shù)解,求導(dǎo),根據(jù)函數(shù)的單調(diào)性及函數(shù)零點(diǎn)的判斷,即可求得k的取值范圍.

解答 解:(1)f(x)=x-1+aex.求導(dǎo),f′(x)=1+aex
由f′(1)=0,1+ae=0,解得:a=-$\frac{1}{e}$,
∴a的值-$\frac{1}{e}$;
(2)當(dāng)a≥0,f′(x)>0恒成立,則f(x)在R上是增函數(shù),無極值;
當(dāng)a<0時(shí),令f′(x)=0,則ex=-$\frac{1}{a}$,x=ln(-$\frac{1}{a}$),
x<ln(-$\frac{1}{a}$),f′(x)>0;當(dāng)x>ln(-$\frac{1}{a}$),f′(x)<0,
∴f(x)在(-∞,ln(-$\frac{1}{a}$))上單調(diào)遞增,在(ln(-$\frac{1}{a}$),+∞)單調(diào)遞減,
f(x)在x=ln(-$\frac{1}{a}$)處取極大值,且極大值f(ln(-$\frac{1}{a}$))=-ln(-a)-2,無極小值;
(3)當(dāng)a=1時(shí),f(x)=x-1+ex
令g(x)=f(x)-(kx-1)=(1-k)x+ex,
由題意可知:g(x)=0無實(shí)數(shù)解,
假設(shè)k<1,此時(shí)g(0)=1>0,g($\frac{1}{k-1}$)=-1+${e}^{\frac{1}{k-1}}$<0,
由函數(shù)g(x)的圖象連續(xù)不斷,由函數(shù)零點(diǎn)存在定理g(x)=0在R上至少有一解,
與方程g(x)=0,在R上沒有實(shí)數(shù)解矛盾,故k≥1,
由k=1時(shí),g(x)=ex,可知方程g(x)=0在R上沒有實(shí)數(shù)解,
∴k的取值范圍[1,+∞).

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性及極值,函數(shù)零點(diǎn)的判定,考查分類討論思想及轉(zhuǎn)化思想的應(yīng)用,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在多面體ABCDEF中,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M為線段BF上一點(diǎn),且DM⊥平面ACE.
(1)求BM的長(zhǎng);
(2)求二面角A-DM-B的余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合M={x|y=ln(2-x)},N={x|x2-3x-4≤0},則M∩N=( 。
A.[-1,2)B.[-1,2]C.[-4,1]D.[-1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=2sin(ωx+φ)-1(ω>0,|φ|<π)的一個(gè)零點(diǎn)是$\frac{π}{3}$,函數(shù)y=f(x)圖象的一條對(duì)稱軸是x=-$\frac{π}{6}$,則ω取得最小值時(shí),函數(shù)f(x)的單調(diào)區(qū)間是(  )
A.[3kπ-$\frac{π}{3}$,3kπ-$\frac{π}{6}$],k∈ZB.[3kπ-$\frac{5π}{3}$,3kπ-$\frac{π}{6}$],k∈Z
C.[2kπ-$\frac{2π}{3}$,2kπ-$\frac{π}{6}$],k∈ZD.[2kπ-$\frac{π}{3}$,2kπ-$\frac{π}{6}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知F(1,0),直線l:x=-1,P為平面上的動(dòng)點(diǎn),過點(diǎn)P作l的垂線,垂足為點(diǎn)Q,且$\overrightarrow{QP}$•$\overrightarrow{QF}$=$\overrightarrow{FP}$•$\overrightarrow{FQ}$.
(1)求動(dòng)點(diǎn)P的軌跡G的方程;
(2)點(diǎn)F關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為M,過F的直線與G交于A、B兩點(diǎn),且AB不垂直于x軸,直線AM交曲線G于C,直線BM交曲線C于D.
①證明直線AB與曲線CD的傾斜角互補(bǔ);
②直線CD是否經(jīng)過定點(diǎn)?若經(jīng)過定點(diǎn),求出這個(gè)定點(diǎn),否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知命題p:若a,b是實(shí)數(shù),則a>b是a2>b2的充分不必要條件;命題q:“?x∈R,x2+2>3x”的否定是“?x∈R,x2+2<3x”,則下列命題為真命題的是( 。
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題p:t=$\frac{π}{2}$,命題q:${∫}_{0}^{t}$sinxdx=1,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.△ABC的內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,若a=2,b=3,∠C=2∠A.
(I)求c的值;
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右頂點(diǎn)分別為A1、A2,M是雙曲線上異于A1、A2的任意一點(diǎn),直線MA1和MA2分別與y軸交于P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),若|OP|,|OM|,|OQ|依次成等比數(shù)列,則雙曲線的離心率的取值范圍是( 。
A.$({\sqrt{2},+∞})$B.$[{\sqrt{2},+∞})$C.$({1,\sqrt{2}})$D.$({1,\sqrt{2}}]$

查看答案和解析>>

同步練習(xí)冊(cè)答案