9.已知無(wú)窮等差數(shù)列{an}中,它的前n項(xiàng)和Sn,且S7>S6,S7>S8那么( 。
A.{an}中a7最大B.{an}中a3或a4最大C.當(dāng)n≥8時(shí),an<0D.一定有S3=S11

分析 由S7>S6,知a7>0,由S7>S8,知a8<0,從而d<0,由此得到當(dāng)n≥8時(shí),an<0.

解答 解:∵無(wú)窮等差數(shù)列{an}中,它的前n項(xiàng)和Sn,且S7>S6,S7>S8
∴由S7>S6,知a7=S7-S6>0,
由S7>S8,知a8=S8-S7<0,
∴d=a8-a7<0,
∴當(dāng)n≥8時(shí),an<0.
故選:C.

點(diǎn)評(píng) 本題考查命題真假的判斷,考查等差數(shù)列等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若雙曲線${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一條漸近線與圓x2+(y-2)2=1至多有一個(gè)交點(diǎn),則雙曲線的離心率為(  )
A.$(\;1,\;\sqrt{2}]$B.$(\;1,\;\sqrt{3}]$C.(1,2]D.(1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.復(fù)數(shù)z滿足方程z=(z-2)i,則z=( 。
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為π,將y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$(縱坐標(biāo)不變),再把所得的圖象向右平移φ個(gè)單位長(zhǎng)度,得到偶函數(shù)y=g(x)的圖象,則φ的值可能是(  )
A.$\frac{π}{8}$B.$\frac{5π}{24}$C.$\frac{3π}{4}$D.$\frac{15π}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.正方體ABCD-A1B1C1D1,
(Ⅰ)求證:B1D⊥平面A1B1C1
(Ⅱ)求直線BB1與平面A1BC1所成角正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,則z=2x+y的最大值為( 。
A.-5B.1C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某校高一年級(jí)的A,B,C三個(gè)班共有學(xué)生120人,為調(diào)查他們的體育鍛煉情況,用分層抽樣的方法從這三個(gè)班中分別抽取4,5,6名學(xué)生進(jìn)行調(diào)查.
(Ⅰ)求A,B,C三個(gè)班各有學(xué)生多少人;
(Ⅱ)記從C班抽取學(xué)生的編號(hào)依次為C1,C2,C3,C4,C5,C6,現(xiàn)從這6名學(xué)生中隨機(jī)抽取2名做進(jìn)一步的數(shù)據(jù)分析.
(i)列出所有可能抽取的結(jié)果;
(ii)設(shè)A為事件“編號(hào)為C1和C2的2名學(xué)生中恰有一人被抽到”,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.甲口袋內(nèi)裝有大小相等的8個(gè)紅球和4個(gè)白球,乙口袋內(nèi)裝有大小相等的9個(gè)紅球和3個(gè)白球,從兩個(gè)口袋內(nèi)各摸出1個(gè)球,那么$\frac{5}{12}$等于( 。
A.2個(gè)球都是白球的概率B.2個(gè)球中恰好有1個(gè)是白球的概率
C.2個(gè)球都不是白球的概率D.2個(gè)球不都是紅球的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=m+t\\ y=t\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=12,點(diǎn)F的極坐標(biāo)為(2$\sqrt{2}$,π),且F在直線l上.
(Ⅰ)若直線l與曲線C交于A、B兩點(diǎn),求|FA|•|FB|的值;
(Ⅱ)求曲線C內(nèi)接矩形周長(zhǎng)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案