分析 利用待定系數(shù)法設(shè)出圓的一般方程,利用點(diǎn)和圓心的距離和半徑的關(guān)系進(jìn)行判斷即可.
解答 解:設(shè)圓的一般方程為x2+y2+Dx+Ey+F=0,
∵圓過A,B,C,
∴$\left\{\begin{array}{l}{1+E+F=0}\\{4+1+2D+E+F=0}\\{9+16+3D+4E+F=0}\end{array}\right.$得D=-2,E=-6,F(xiàn)=5,
則圓的一般方程為x2+y2-2x-6y+5=0,
即標(biāo)準(zhǔn)方程為(x-1)2+(y-3)2=5,
則圓心M(1,3),半徑R=$\sqrt{5}$,
則|DM|=$\sqrt{(-1-1)^{2}+(3-2)^{2}}$=$\sqrt{4+1}=\sqrt{5}$=R,
即點(diǎn)D在圓上.
點(diǎn)評 本題主要考查圓的一般方程的求解以及點(diǎn)和圓的位置關(guān)系的判斷,利用待定系數(shù)法求出圓的方程是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | -$\frac{2π}{3}$ | C. | -$\frac{4π}{3}$ | D. | $\frac{5π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 垂直 | B. | 平行或在平面α內(nèi) | C. | 平行 | D. | 在平面α內(nèi) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 假設(shè)a,b,c都不小于1 | B. | 假設(shè)a,b,c都小于1 | ||
C. | 假設(shè)a,b,c不都大于等于1 | D. | 假設(shè)a,b,c不都小于1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{π}{6}$] | B. | (0,$\frac{π}{3}$] | C. | (0,$\frac{π}{2}$] | D. | [$\frac{π}{6}$,π) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com