設(shè)橢圓:的左、右焦點(diǎn)分別為,上頂點(diǎn)為,過點(diǎn)與垂直的直線交軸負(fù)半軸于點(diǎn),且,若過,,三點(diǎn)的圓恰好與直線:相切. 過定點(diǎn)的直線與橢圓交于,兩點(diǎn)(點(diǎn)在點(diǎn),之間).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線的斜率,在軸上是否存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形. 如果存在,求出的取值范圍,如果不存在,請說明理由;
(Ⅲ)若實(shí)數(shù)滿足,求的取值范圍.
(Ⅰ)
(Ⅱ)
(Ⅲ)
【解析】(Ⅰ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052219355889062290/SYS201205221939303906187585_DA.files/image004.png">,
所以為中點(diǎn).
設(shè)的坐標(biāo)為,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052219355889062290/SYS201205221939303906187585_DA.files/image009.png">,
所以,,且過三點(diǎn)的圓的圓心為,半徑為. ………………………… 2分
因?yàn)樵搱A與直線相切,所以.
解得,所以,.
故所求橢圓方程為. …………………………………… 4分
(Ⅱ)設(shè)的方程為(),
由 得.
設(shè),,則.……………………5分
所以.
=
.
由于菱形對角線互相垂直,則.……………………6分
所以.
故.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052219355889062290/SYS201205221939303906187585_DA.files/image022.png">,所以.
所以
即.
所以
解得. 即.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052219355889062290/SYS201205221939303906187585_DA.files/image022.png">,所以.
故存在滿足題意的點(diǎn)且的取值范圍是. ……………… 8分
(Ⅲ)①當(dāng)直線斜率存在時(shí),
設(shè)直線方程為,代入橢圓方程
得.
由,得. …………………………………………… 9分
設(shè),,
則,.
又,所以. 所以. …… 10分
所以,.
所以. 所以.
整理得. ……………………………………… 11分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052219355889062290/SYS201205221939303906187585_DA.files/image047.png">,所以. 即. 所以.
解得.
又,所以. …………………………………… 13分
②又當(dāng)直線斜率不存在時(shí),直線的方程為,
此時(shí),,,,
,所以.
所以,即所求的取值范圍是. ……………… 14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
F1F2 |
F2Q |
0 |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江高三上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)設(shè)橢圓:的左、右焦點(diǎn)分別為,上頂點(diǎn)為,過點(diǎn)與垂直的直線交軸負(fù)半軸于點(diǎn),且.
(1)求橢圓的離心率; (2)若過、、三點(diǎn)的圓恰好與直線:相切,
求橢圓的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆山西省第一學(xué)期高三12月月考文科數(shù)學(xué)試卷 題型:解答題
設(shè)橢圓:的左、右焦點(diǎn)分別是,下頂點(diǎn)為,線段的中點(diǎn)為(為坐標(biāo)原點(diǎn)),如圖.若拋物線:與軸的交點(diǎn)為,且經(jīng)過點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),為拋物線上的一動(dòng)點(diǎn),過點(diǎn)作拋物線的切線交橢圓于兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2010-2011學(xué)年重慶市主城八區(qū)高三第二次學(xué)業(yè)調(diào)研抽測文科數(shù)學(xué)卷 題型:解答題
設(shè)橢圓:的左、右焦點(diǎn)分別為、,上頂點(diǎn)為,在軸負(fù)半軸上有一點(diǎn),滿足,且⊥.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若過、、三點(diǎn)的圓恰好與直線相切,求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓交于、兩點(diǎn),
若點(diǎn)使得以為鄰邊的平行四邊形是菱形,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com