科目: 來源: 題型:解答題
(本小題滿分12分)
某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬元)滿足
,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本);
(2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)年中秋、國慶長假期間,由于國家實行座及以下小型車輛高速公路免費政策,導(dǎo)致在長假期間高速公路出現(xiàn)擁堵現(xiàn)象。長假過后,據(jù)有關(guān)數(shù)據(jù)顯示,某高速收費路口從上午點到中午點,車輛通過該收費站的用時(分鐘)與車輛到達該收費站的時刻之間的函數(shù)關(guān)系式可近似地用以下函數(shù)給出:
y=
求從上午點到中午點,通過該收費站用時最多的時刻。
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分14分)已知函數(shù),其中
(Ⅰ)求在上的單調(diào)區(qū)間;
(Ⅱ)求在(為自然對數(shù)的底數(shù))上的最大值;
(III)對任意給定的正實數(shù),曲線上是否存在兩點、,使得是以原點為直角頂點的直角三角形,且此三角形斜邊中點在軸上?
查看答案和解析>>
科目: 來源: 題型:解答題
已知區(qū)間,函數(shù)的定義域為
(1)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍
(2)若,求實數(shù)的取值范圍
(3)若關(guān)于的方程在區(qū)間內(nèi)有解,求實數(shù)的取值范圍
查看答案和解析>>
科目: 來源: 題型:解答題
為了綠化城市,準備在如圖所示的區(qū)域內(nèi)修建一個矩形PQRC的草坪,且PQ//BC,RQBC。另外的內(nèi)部有一文物保護區(qū)不能占用,經(jīng)測量AB="100m," BC="80m," AE="30m," AF=20m,應(yīng)如何設(shè)計才能使草坪的占地面積最大?
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)南昌市在加大城市化進程中,環(huán)境污染問題也日益突出。據(jù)環(huán)保局測定,某處的污染指數(shù)與附近污染源的強度成正比,與到污染源距離的平方成反比.現(xiàn)已知相距18的A,B兩家工廠(視作污染源)的污染強度分別為,它們連線上任意一點C處的污染指數(shù)等于兩家工廠對該處的污染指數(shù)之和.設(shè)().
(1) 試將表示為的函數(shù);
(2) 若,且時,取得最小值,試求的值.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)
圖1是某種稱為“凹槽”的機械部件的示意圖,圖2是凹槽的橫截面(陰影部分)示意圖,其中四邊形ABCD是矩形,弧CmD是半圓,凹槽的橫截面的周長為4.已知凹槽的強度與橫截面的面積成正比,比例系數(shù)為,設(shè)AB=2x,BC=y.
(1)寫出y關(guān)于x函數(shù)表達式,并指出x的取值范圍;
(2)求當x取何值時,凹槽的強度最大.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分10分)
已知關(guān)于x的方程x2+(m-3)x+m=0
(1)若此方程有實數(shù)根,求實數(shù)m的取值范圍.
(2)若此方程的兩實數(shù)根之差的絕對值小于,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題共8分)
提高二環(huán)路的車輛通行能力可有效改善整個城區(qū)的交通狀況,在一般情況下,二環(huán)路上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù)。當二環(huán)路上的車流密度達到600輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過60輛/千米時,車流速度為80千米/小時,研究表明:當60≤x≤600時,車流速度v是車流密度x的一次函數(shù)。
(Ⅰ)當0≤x≤600時,求函數(shù)f(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內(nèi)通過二環(huán)路上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出最大值。(精確到1輛/小時)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com