相關(guān)習(xí)題
 0  206437  206445  206451  206455  206461  206463  206467  206473  206475  206481  206487  206491  206493  206497  206503  206505  206511  206515  206517  206521  206523  206527  206529  206531  206532  206533  206535  206536  206537  206539  206541  206545  206547  206551  206553  206557  206563  206565  206571  206575  206577  206581  206587  206593  206595  206601  206605  206607  206613  206617  206623  206631  266669 

科目: 來(lái)源: 題型:

若函數(shù)f(x)與g(x)同在一個(gè)區(qū)間內(nèi)取同一個(gè)自變量時(shí),同時(shí)取得相同的最小值,則稱這兩個(gè)函數(shù)為“兄弟函數(shù)”,已知函數(shù)f(x)=x2+bx+c(b,c∈R)與g(x)=
x2-x+1
x
是定義在區(qū)間[
1
2
,2]上的“兄弟函數(shù)”,那么f(x)在區(qū)間[
1
2
,2]上的最大值是
 

查看答案和解析>>

科目: 來(lái)源: 題型:

過(guò)點(diǎn)(
2
,0)引直線l與曲線y=
1+x2
相交于A,B兩點(diǎn),則直線l斜率的取值范圍是
 

查看答案和解析>>

科目: 來(lái)源: 題型:

已知
a
=(sinθ,2tanθ),
b
=(1,sin2
θ
2
),且
a
b
=3,求
sin2θ+2sin2θ
tan(θ+
π
4
)
的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)a,b,c∈R+,則“abc=1”是“
1
a
+
1
b
+
1
c
≤a+b+c”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要的條件

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=-lnx+
1
2
ax2
+(1-a)x+2.
(Ⅰ)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若0<x<1,求證:f(1+x)<f(1-x);
(Ⅲ)若A(x1,y1),B(x2,y2)為函數(shù)y=f(x)的圖象上的兩點(diǎn),記k為直線AB的斜率,若x0=
x1+x2
2
,f′(x)為f(x)的導(dǎo)函數(shù),求證:f′(x0)>k.

查看答案和解析>>

科目: 來(lái)源: 題型:

數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足2kSn-(2k+1)Sn-1=2k(常數(shù)k>0,n=2,3,4,…)
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{an}的公比為f(k),作數(shù)列{bn},使b1=3,bn=f(
1
bn-1
)(n=2,3,4,…)求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)cn=bn-2,若存在m∈N*,使
lim
n→∞
(cmcm+1+cm+1cm+2+…+cncn+1)<
1
2007
,試求m的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知
OA
=
a
OB
=
b
,|
a
|=|
b
|=2,|
a
+
b
|=2
3
,則
a
b
的夾角為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

已知
a
=(-
3
sinωx,cosωx),
b
=(cosωx,cosωx)(ω>0),令函數(shù)f(x)=
a
b
,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目: 來(lái)源: 題型:

有一列數(shù)1,2,5,26,…,你能找出它的規(guī)律嗎?下面的程序框圖所示是輸出這個(gè)數(shù)列的前10項(xiàng),并求和的算法,試將框圖補(bǔ)充完整,并寫(xiě)出相應(yīng)的程序.

查看答案和解析>>

科目: 來(lái)源: 題型:

某程序框圖如圖所示,若輸入的n=10,則輸出的結(jié)果是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案