相關(guān)習(xí)題
 0  211783  211791  211797  211801  211807  211809  211813  211819  211821  211827  211833  211837  211839  211843  211849  211851  211857  211861  211863  211867  211869  211873  211875  211877  211878  211879  211881  211882  211883  211885  211887  211891  211893  211897  211899  211903  211909  211911  211917  211921  211923  211927  211933  211939  211941  211947  211951  211953  211959  211963  211969  211977  266669 

科目: 來源: 題型:

設(shè)同時滿足以下兩個條件的有窮數(shù)列a1,a2,a3,…,an為n(n=2,3,4,…)階“期待數(shù)列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(Ⅰ)若等比數(shù)列{an}為2k(k∈N*)階“期待數(shù)列”,求公比q;
(Ⅱ)記n階“期待數(shù)列”{ai}的前k項和為Sk(k=1,2,3,…,n).
(1)求證:|Sk|≤
1
2
;
(2)若存在m∈{1,2,3,…,n},使得Sm=
1
2
.試問:數(shù)列{Si}(i=1,2,3,…,n)能否為n階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;否則,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=2cos2x+
3
sin2x,x∈R.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)將函數(shù)f(x)圖象上所有點的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變得到函數(shù)h(x)的圖象,再將h(x)的圖象向右平衡移
π
3
個單位得到g(x)的圖象,求函數(shù)g(x)的解析式,并求g(x)在[0,π]上的值域.

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=
1
3
x3+ax2+bx+4,g(x)=mx3-6mx2+2(m≠0),f(x)在(1,f(1))處的切線方程為y=-3x+
10
3

(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)討論方程f(x)=k-2(x∈[0,3])的根的個數(shù);
(Ⅲ)是否存在實數(shù)m,使得對任意的x1∈[-1,2],總存在x2∈[0,3],使得g(x1)=f(x2)成立?若存在,求出實數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

判斷函數(shù)f(x)=ax2+1(a>0)在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=2sin(
x
2
+
π
3

(1)求f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,π]時,求f(x)的值域.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=t,且an+1=2Sn+1,n∈N*
(Ⅰ)當(dāng)實數(shù)t為何值時,數(shù)列{an}是等比數(shù)列?
(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)bn=log3an+1,數(shù)列{
bn
an
}的前n項和Tn,證明Tn
9
4

查看答案和解析>>

科目: 來源: 題型:

已知直線l的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,圓C的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù))
(Ⅰ)判斷直線l圓C的位置關(guān)系;
(Ⅱ)若橢圓的參數(shù)方程為
x=2cosφ
y=
3
sinφ
(φ為參數(shù)),過圓C的圓心且與直線l垂直的直線l′與橢圓相交于兩點A、B,求|CA|•|CB|.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ex+ax2-e2x.
(1)若曲線在點(2,f(2))處的切線平行于x軸,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若x∈(0,1)時,總有f(x)>xex-e2x+1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知圓C1的圓心在坐標(biāo)原點O,且恰好與直線l1:x-2y+3
5
=0相切,點A為圓上一動點,AM⊥x軸于點M,且動點N滿
ON
=
3
3
OA
+(1-
3
3
OM
,設(shè)動點N的軌跡為曲線C.
(I)求曲線C的方程;
(Ⅱ)直線l與直線l1垂直且與曲線C交于B、D兩點,求△OBD面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

設(shè)關(guān)于x的方程x2-2ax-2a+15=0的兩根模的和為8,求實數(shù)a的值,并求方程的根.

查看答案和解析>>

同步練習(xí)冊答案