相關(guān)習(xí)題
 0  229785  229793  229799  229803  229809  229811  229815  229821  229823  229829  229835  229839  229841  229845  229851  229853  229859  229863  229865  229869  229871  229875  229877  229879  229880  229881  229883  229884  229885  229887  229889  229893  229895  229899  229901  229905  229911  229913  229919  229923  229925  229929  229935  229941  229943  229949  229953  229955  229961  229965  229971  229979  266669 

科目: 來(lái)源: 題型:解答題

2.設(shè)函數(shù)f(x)=(1+a-ax)lnx-b(x-1),其中a,b是實(shí)數(shù).已知曲線y=f(x)與x軸相切于點(diǎn)(1,0).
(1)求常數(shù)b的值;
(2)當(dāng)1≤x≤2時(shí),關(guān)于x的不等式f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

1.已知圓C:x2+y2-2y-1=0,直線l:y=x+m,則C的圓心坐標(biāo)為(0,1),若l與C相切,則m=-1或3.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

20.在平面直角坐標(biāo)系xOy中,已知直線l:x+y+a=0與點(diǎn)A(0,2),若直線l上存在點(diǎn)M滿足|MA|2+|MO|2=10(O為坐標(biāo)原點(diǎn)),則實(shí)數(shù)a的取值范圍是(  )
A.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1]B.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1)C.[-$\sqrt{5}$-1,$\sqrt{5}$-1]D.[-$\sqrt{5}$-1,$\sqrt{5}$-1)

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

19.若函數(shù)f(x)=(4-x2)(ax2+bx+5)的圖象關(guān)于直線$x=-\frac{3}{2}$對(duì)稱,則f(x)的最大值是36.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

18.若圓C:(x-3)2+(y-2)2=1(a>0)與直線y=$\frac{3}{4}$x相交于P、Q兩點(diǎn),則|PQ|=( 。
A.$\frac{2}{5}\sqrt{6}$B.$\frac{3}{5}\sqrt{6}$C.$\frac{4}{5}\sqrt{6}$D.$\sqrt{6}$

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

17.已知過(guò)點(diǎn)M(-3,-3)的直線l被圓x2+y2+4y-21=0所截得的弦長(zhǎng)為10,求直線l的方程為x-3y-6=0.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.每逢節(jié)假日,在微信好友群發(fā)紅包逐漸成為一種時(shí)尚,還能增進(jìn)彼此的感情.2015年中秋節(jié)期間,小魯在自己的微信校友群,向在線的甲、乙、丙、丁四位校友隨機(jī)發(fā)放紅包,發(fā)放的規(guī)則為:每次發(fā)放1個(gè),每個(gè)人搶到的概率相同.
(1)若小魯隨機(jī)發(fā)放了3個(gè)紅包,求甲至少得到1個(gè)紅包的概率;
(2)若丁因有事暫時(shí)離線一段時(shí)間,而小魯在這段時(shí)間內(nèi)共發(fā)放了3個(gè)紅包,其中2個(gè)紅包中各有5元,1個(gè)紅包有10元,記這段時(shí)間內(nèi)乙所得紅包的總錢數(shù)為X元,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

15.已知過(guò)點(diǎn)M(-3,-3)的直線l被圓x2+y2+4y-21=0所截得的弦長(zhǎng)為8,則直線l的方程為4x+3y+21=0或x=-3.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,點(diǎn)P($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$)在橢圓上.
(1)求橢圓C的方程;
(2)若過(guò)橢圓C的左焦點(diǎn)F的直線l與橢圓交于A,B兩點(diǎn),求△AOB面積的最大值(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

13.設(shè)拋物線C1:y2=4x的準(zhǔn)線與x軸交于點(diǎn)F1,焦點(diǎn)為F2,橢圓C2以F1,F(xiàn)2為焦點(diǎn)且橢圓C2上的點(diǎn)到F1的距離的最大值為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線l經(jīng)過(guò)橢圓C2的右焦點(diǎn)F2,與拋物線C1交于A1、A2兩點(diǎn),與橢圓C2交于B1、B2兩點(diǎn),當(dāng)以B1B2為直徑的圓經(jīng)過(guò)F1時(shí),求|A1A2|的長(zhǎng);
(3)若M是橢圓上的動(dòng)點(diǎn),以M為圓心,MF2為半徑作⊙M是否存在定圓⊙N,使得⊙M與⊙N恒相切,若存在,求出⊙N的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案