相關(guān)習(xí)題
 0  230799  230807  230813  230817  230823  230825  230829  230835  230837  230843  230849  230853  230855  230859  230865  230867  230873  230877  230879  230883  230885  230889  230891  230893  230894  230895  230897  230898  230899  230901  230903  230907  230909  230913  230915  230919  230925  230927  230933  230937  230939  230943  230949  230955  230957  230963  230967  230969  230975  230979  230985  230993  266669 

科目: 來源: 題型:填空題

6.若cos($\frac{π}{6}$-θ)=$\frac{{\sqrt{3}}}{3}$,則cos($\frac{5π}{6}$+θ)-$\sqrt{3}$cos($\frac{π}{3}$-2θ)=0.

查看答案和解析>>

科目: 來源: 題型:解答題

5.某中學(xué)號召學(xué)生在今年暑假期間至少參加一次社會公益活動(以下簡稱活動).該校合唱團(tuán)共有100名學(xué)生,他們參加活動的次數(shù)統(tǒng)計如圖所示.
(Ⅰ)求合唱團(tuán)學(xué)生參加活動的人均次數(shù);
(Ⅱ)從合唱團(tuán)中任意選兩名學(xué)生,求他們參加活動次數(shù)恰好相等的概率.

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知函數(shù) f(x)的導(dǎo)數(shù)為 f'(x),且滿足關(guān)系式 f(x)=x3•$\int_0^2{xdx+{x^2}f'(1)+3x}$,則 f'(2)的值等于-9.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.如圖,D是△ABC所在平面內(nèi)一點,且$\overrightarrow{AB}$=2$\overrightarrow{DC}$,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則$\overrightarrow{BD}$=(  )  
A.$\frac{3}{2}$$\overrightarrow$-$\overrightarrow{a}$B.$\overrightarrow$-$\frac{3}{2}$$\overrightarrow{a}$C.$\frac{1}{2}$$\overrightarrow$-$\overrightarrow{a}$D.$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{a}$

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,四邊形ABCD是梯形,AD∥BC,∠BAD=90°,DD1⊥面ABCD,DD1∥CC1,AD=4,AB=2,BC=1.
(Ⅰ)求證:BC1∥平面ADD1
(Ⅱ)若DD1=2,求平面AC1D1與平面ADD1所成的銳二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知A、B兩地之間有6條網(wǎng)線并聯(lián),這6條網(wǎng)線能通過的信息量分別為1,1,2,2,3,3.現(xiàn)從中任取3條網(wǎng)線,設(shè)可通過的信息量為X,當(dāng)X≥6時,可保證線路信息暢通(通過的信息量X為三條網(wǎng)線上信息量之和),則線路信息暢通的概率為(  )
A.$\frac{2}{3}$B.$\frac{4}{5}$C.$\frac{7}{10}$D.$\frac{5}{9}$

查看答案和解析>>

科目: 來源: 題型:解答題

20.為了解班級學(xué)生對任課教師課堂教學(xué)的滿意程度情況.現(xiàn)從某班全體學(xué)生中,隨機(jī)抽取12名,測試的滿意度分?jǐn)?shù)(百分制)如莖葉圖所示:
根據(jù)學(xué)校體制標(biāo)準(zhǔn),成績不低于76的為優(yōu)良.
(Ⅰ)從這12名學(xué)生中任選3人進(jìn)行測試,求至少有1人成績是“優(yōu)良”的概率;
(Ⅱ)從抽取的12人中隨機(jī)選取3人,記ξ表示測試成績“優(yōu)良”的學(xué)生人數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F2的直線交雙曲線于A,B兩點,連結(jié)AF1,BF1,若|AB|=|BF1|,且∠ABF1=90°,則雙曲線的離心率為$\sqrt{5-2\sqrt{2}}$.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知等差數(shù)列{an}中,a2=5,a6=17,若從數(shù)列{an}中依次取出第3項,第9項,第27項,…,第3n項,按原來的順序構(gòu)成一個新的數(shù)列{bn}.
(1)求數(shù)列{bn}的通項公式;
(2)設(shè)cn=$\frac{3n}{{{b_n}+1}}$(n∈N*),Tn=c1+c2+…+cn(n∈N*),證明:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目: 來源: 題型:填空題

17.若數(shù)列{an}的通項公式是an=(-1)n(3n-2),則a1+a2+…+a91=-136.

查看答案和解析>>

同步練習(xí)冊答案