相關(guān)習題
 0  231631  231639  231645  231649  231655  231657  231661  231667  231669  231675  231681  231685  231687  231691  231697  231699  231705  231709  231711  231715  231717  231721  231723  231725  231726  231727  231729  231730  231731  231733  231735  231739  231741  231745  231747  231751  231757  231759  231765  231769  231771  231775  231781  231787  231789  231795  231799  231801  231807  231811  231817  231825  266669 

科目: 來源: 題型:選擇題

1.點(0,0)和點(-1,1)在直線2x+y+m=0的同側(cè),則m的取值范圍是( 。
A.m>1或m<0B.m>2或m<1C.0<m<1D.1<m<2

查看答案和解析>>

科目: 來源: 題型:選擇題

20.下面幾種推理是合情推理的是(  )
①由圓x2+y2=r2的面積是πr2,猜想出橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的面積是πab;
②由a1=1,an=2n-1,求出S1,S2,S3,猜想出數(shù)列{an}的前n項和Sn的表達式;
③三角形內(nèi)角和是180°,四邊形內(nèi)角和是360°,五邊形內(nèi)角和是540°,由此得凸n邊形內(nèi)角和是(n-2)•180°;
④所有自然數(shù)都是整數(shù),4是自然數(shù),所以4是整數(shù).
A.①④B.②③C.①②③D.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=ax2-$\frac{a}{2}$+1,g(x)=x+$\frac{a}{x}$.
(1)f(x)>0在x∈[1,2)上恒成立,求a的取值范圍;
(2)當a>0時,對任意的x1∈[1,2],存在x2∈[1,2],使得f(x1)≥g(x2)恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

18.在橢圓$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{27}$=1上有兩個動點M,N,K(3,0)為定點,$\overrightarrow{KM}$•$\overrightarrow{KN}$=0,則$\overrightarrow{KM}$•$\overrightarrow{NM}$最小值為9.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}-4,-4≤x≤2}\\{2x,x>2}\end{array}\right.$,若f(x0)=6,則x0=-$\sqrt{10}$,或3.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知集合A={y|y=x${\;}^{\frac{2}{3}}$,x≥1},B={y|y=($\frac{1}{2}$)x,x≥-1},則A∩B=( 。
A.{y|1≤y≤2}B.{y|y≥2}C.{y|$\frac{1}{2}$≤y≤1}D.{y|y≥1}

查看答案和解析>>

科目: 來源: 題型:選擇題

15.盒中有10只螺絲釘,其中有3只是壞的,現(xiàn)抽取3次,每次從盒中隨機不放回地取1只,那么在第一只取到為好的前提下,恰有1只是壞的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{7}{40}$D.$\frac{2}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知函數(shù)f(x)=(x+a)ex(e為自然對數(shù)的底數(shù)),若x=1是函數(shù)f(x)的極值點.
(Ⅰ)求a的值;         
(Ⅱ)任意x1,x2∈[0,2]時,證明:|f(x1)-f(x2)|≤e.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.在△ABC中,a,b,c分別是角A,B,C所對邊的邊長,若cosA+sinA-$\frac{2}{cosC+sinC}$=0,則$\frac{a+c}$的值是( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=2x+$\frac{1}{x}$-lnx.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程; 
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

同步練習冊答案