相關(guān)習(xí)題
 0  232891  232899  232905  232909  232915  232917  232921  232927  232929  232935  232941  232945  232947  232951  232957  232959  232965  232969  232971  232975  232977  232981  232983  232985  232986  232987  232989  232990  232991  232993  232995  232999  233001  233005  233007  233011  233017  233019  233025  233029  233031  233035  233041  233047  233049  233055  233059  233061  233067  233071  233077  233085  266669 

科目: 來源: 題型:填空題

17.已知實數(shù)x,y滿足$\left\{{\begin{array}{l}{2x-3≥y}\\{y≤4-x}\\{x-2y-4≤0}\end{array}}\right.$,則z=2x+y的最大值為8.

查看答案和解析>>

科目: 來源: 題型:填空題

16.在△ABC中,a+b+10c=2(sinA+sinB+10sinC),A=60°,則a=$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知$f(\frac{2}{x}+1)={x^2}$+1,則f(5)=( 。
A.$\frac{5}{4}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知集合A={0,1},集合B滿足A∪B={0,1},則集合B的個數(shù)有( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知數(shù)列{an}、{bn}滿足:a1=$\frac{1}{4}$,an+bn=1,bn+1=$\frac{_{n}}{1-{{a}_{n}}^2}$
(1)證明數(shù)列{$\frac{1}{_{n}-1}$}是等差數(shù)列   
(2)求數(shù)列{bn}的通項公式;
(3)若bn>k對任意的n∈N*恒成立,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.若函數(shù)f(x)單調(diào)函數(shù),且對任意實數(shù)x,均有f[f(x)-ax]=a+1(a≥e,e自然數(shù)對數(shù)的底數(shù)),則${∫}_{0}^{1}$f(x)dx的最小值為( 。
A.e-1B.e+1C.eD.$\frac{1}{e}+1$

查看答案和解析>>

科目: 來源: 題型:選擇題

11.不等式($\frac{a}{{e}^{a}}$-b)2≥m-(a-b+3)2對任意實數(shù)a,b恒成立,則實數(shù)m的最大值是( 。
A.$\frac{9}{2}$B.$\frac{3\sqrt{2}}{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

10.為了了解小學(xué)生的體能情況,抽取了某校一個年級的部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,將所得的數(shù)據(jù)整理后,畫頻率分布直方圖.已知圖中橫軸從左向右的分組為[50,75)、[75,100)、[100,125)、[125,150],縱軸前3個對應(yīng)值分別為0.004、0.01、0.02,因失誤第4個對應(yīng)值丟失.
(Ⅰ) 已知第1小組頻數(shù)為10,求參加這次測試的人數(shù)?
(Ⅱ) 求第4小組在y軸上的對應(yīng)值;
(Ⅲ) 若次數(shù)在75次以上 ( 含75次 ) 為達(dá)標(biāo),試估計該年級跳繩測試達(dá)標(biāo)率是多少?
(Ⅳ) 試估計這些數(shù)據(jù)的中位數(shù).

查看答案和解析>>

科目: 來源: 題型:填空題

9.將函數(shù)y=sin2x的圖象向右平移φ個單位長度后所得圖象的解析式為$y=sin(2x-\frac{π}{6})$,則φ=$\frac{π}{12}$$(0<φ<\frac{π}{2})$,再將函數(shù)$y=sin(2x-\frac{π}{6})$圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)后得到的圖象的解析式為y=sin(x-$\frac{π}{6}$).

查看答案和解析>>

科目: 來源: 題型:選擇題

8.對于命題p:?x0∈R,使${sin^2}{x_0}+\frac{4}{{{{sin}^2}{x_0}}}$最小值為4;命題q:?x∈R,都有x2+x+1>0,給出下列結(jié)論正確的是( 。
A.命題“p∧q”是真命題B.命題“¬p∧q”是真命題
C.命題“p∧¬q”是真命題D.命題“¬p∨¬q”是假命題

查看答案和解析>>

同步練習(xí)冊答案