相關習題
 0  237140  237148  237154  237158  237164  237166  237170  237176  237178  237184  237190  237194  237196  237200  237206  237208  237214  237218  237220  237224  237226  237230  237232  237234  237235  237236  237238  237239  237240  237242  237244  237248  237250  237254  237256  237260  237266  237268  237274  237278  237280  237284  237290  237296  237298  237304  237308  237310  237316  237320  237326  237334  266669 

科目: 來源: 題型:選擇題

14.已知函數(shù)f(x)是奇函數(shù),且滿足f(2-x)=f(x)(x∈R),當0<x≤1時,f(x)=lnx+2,則函數(shù)y=f(x)在(-2,4]上的零點個數(shù)是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知集合M={-1,0},N=(y|y=1-cos$\frac{π}{2}$x,x∈M),則集合M∩N的真子集的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)$f(x)=|{2x-1}|+x+\frac{1}{2}$的最小值為m.
(1)求m的值;
(2)若a,b,c是正實數(shù),且a+b+c=m,求證:2(a3+b3+c3)≥ab+bc+ca-3abc.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數(shù)$f(x)=x-\frac{a}{e^x}$.
(1)當a=-1時,求函數(shù)f(x)的單調區(qū)間;
(2)若函數(shù)f(x)在[0,1]上的最小值為$\frac{3}{2}$,求實數(shù)a的值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知數(shù)列$\left\{{a_n}\right\},{a_1}=2,{a_n}=\frac{1}{n}+({1-\frac{1}{n}}){a_{n-1}}({n≥2,n∈{N^*}})$.
(1)證明:數(shù)列{nan}是等差數(shù)列;
(2)記${b_n}=\frac{1}{{{n^2}{a_n}}}$,{bn}的前n項和為Sn,證明:Sn<1.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知函數(shù)$f(x)=\frac{alnx}{x}({a∈R})$的圖象與直線x-2y=0相切,當函數(shù)g(x)=f(f(x))-t恰有一個零點時,實數(shù)t的取值范圍是( 。
A.{0}B.[0,1]C.[0,1)D.(-∞,0)

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知蝴蝶(體積忽略不計)在一個長、寬、高分別為5,4,3的長方體內自由飛行,若蝴蝶在飛行過程中始終保持與長方體的6個面的距離均大于1,稱其為“安全飛行”,則蝴蝶“安全飛行”的概率為( 。
A.$\frac{1}{10}$B.$\frac{2}{5}$C.$\frac{π}{45}$D.$\frac{45-π}{45}$

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=2x3-3x+1,g(x)=kx+1-lnx.
(1)設函數(shù)$h(x)=\left\{\begin{array}{l}f(x),x<1\\ g(x),x≥1\end{array}\right.$,當k<0時,討論h(x)零點的個數(shù);
(2)若過點P(a,-4)恰有三條直線與曲線y=f(x)相切,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和${S_n}={n^2}+kn$,其中k為常數(shù),a6=13.
(1)求k的值及數(shù)列{an}的通項公式;
(2)若${b_n}=\frac{2}{{n({a_n}+1)}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:選擇題

5.設函數(shù)f′(x)是定義(0,2π)在上的函數(shù)f(x)的導函數(shù),f(x)=f(2π-x),當0<x<π時,若f(x)sinx-f′(x)cosx<0,a=$\frac{1}{2}$f($\frac{π}{3}$),b=0,c=-$\frac{{\sqrt{3}}}{2}$f($\frac{7π}{6}$),則( 。
A.a<b<cB.b<c<aC.c<b<aD.c<a<b

查看答案和解析>>

同步練習冊答案