相關(guān)習(xí)題
 0  237380  237388  237394  237398  237404  237406  237410  237416  237418  237424  237430  237434  237436  237440  237446  237448  237454  237458  237460  237464  237466  237470  237472  237474  237475  237476  237478  237479  237480  237482  237484  237488  237490  237494  237496  237500  237506  237508  237514  237518  237520  237524  237530  237536  237538  237544  237548  237550  237556  237560  237566  237574  266669 

科目: 來源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為:$ρ=\frac{4cosθ}{{1-{{cos}^2}θ}}$,直線l的參數(shù)方程是$\left\{\begin{array}{l}x=2+tcosα\\ y=2+tsinα\end{array}\right.$(t為參數(shù),0≤α<π).
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于兩點(diǎn)A,B,且線段AB的中點(diǎn)為M(2,2),求α.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=x•ex-1-a(x+lnx),a∈R. 
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線為x軸,求a的值:
(2)若f(x)的最小值大于0,求證:0<a<e.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知點(diǎn)P是△ABC所在平面內(nèi)一點(diǎn),且$\overrightarrow{PA}$=-2$\overrightarrow{PB}$,在△ABC內(nèi)任取一點(diǎn)Q,則Q落在△APC內(nèi)的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

5.在△ABC中,∠ACB=60°,BC>1,AC=AB+$\frac{1}{2}$,當(dāng)△ABC的周長最短時(shí),BC的長是$\frac{\sqrt{2}}{2}$+1.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.若$\frac{sinαcosα}{cos2α+1}=1,tan({α-β})=3$,則tanβ=( 。
A.-1B.$\frac{1}{7}$C.$-\frac{1}{7}$D.1

查看答案和解析>>

科目: 來源: 題型:選擇題

3.$f(x)=Asin(ωx+φ)(A>0,ω>0,-\frac{π}{2}<φ<\frac{π}{2})$的部分圖象如圖所示,則函數(shù)f(x)的解析式為(  )
A.$f(x)=2sin(2x-\frac{π}{6})$B.$f(x)=2sin(x+\frac{π}{6})$C.$f(x)=2sin(2x+\frac{π}{3})$D.$f(x)=2sin(2x+\frac{π}{6})$

查看答案和解析>>

科目: 來源: 題型:選擇題

2.cos1200°=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知數(shù)列{an}是等差數(shù)列,若$\frac{{{a_{12}}}}{{{a_{11}}}}<-1$,且它的前n項(xiàng)和sn有最大值,則使得sn>0的n的最大值為( 。
A.11B.12C.21D.22

查看答案和解析>>

科目: 來源: 題型:解答題

20.設(shè)$f(x)={e^x}({x-\frac{a-1}{x}}),g(x)=aln{x_{\;}}_{\;}({e=2.71828…})$.
(I)當(dāng)a>1時(shí),討論函數(shù)$F(x)=\frac{f(x)}{e^x}-g(x)$的單調(diào)性;
(II)求證:當(dāng)a=0時(shí),不等式$f(x)>2\sqrt{e}$對任意x∈(0,+∞)都成立.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知向量$\overrightarrow a=({-1,2}),\overrightarrow b=({1,x})$,若$\overrightarrow a⊥({\overrightarrow a+2\overrightarrow b})$,則實(shí)數(shù)x的值為-$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案