相關(guān)習(xí)題
 0  237715  237723  237729  237733  237739  237741  237745  237751  237753  237759  237765  237769  237771  237775  237781  237783  237789  237793  237795  237799  237801  237805  237807  237809  237810  237811  237813  237814  237815  237817  237819  237823  237825  237829  237831  237835  237841  237843  237849  237853  237855  237859  237865  237871  237873  237879  237883  237885  237891  237895  237901  237909  266669 

科目: 來源: 題型:填空題

15.已知f(x)=asin(πx+α)+bcos(πx-β),其中α,β,a,b均為非零實(shí)數(shù),若f(2016)=-1,則f(2017)=1.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.下列函數(shù)中,既是奇函數(shù),又在定義域上是增函數(shù)的是( 。
A.y=x2B.y=x|x|C.y=x+$\frac{2}{x}$D.y=x-$\frac{4}{x}$

查看答案和解析>>

科目: 來源: 題型:選擇題

13.下列命題為真命題的是( 。
A.?x∈N,x3>x2
B.函數(shù)f(x)=ax2+bx+c為偶函數(shù)的充要條件是b=0
C.?x0∈R,x02+2x0+2≤0
D.“x>3”是“x2>9”的必要條件

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知二次函數(shù)g(x)對任意實(shí)數(shù)x都滿足g(x)=g(1-x),g(x)的最小值為-$\frac{9}{8}$且g(1)=-1.令f(x)=g(x+$\frac{1}{2}$)+mlnx+$\frac{9}{8}$(m∈R,x>0).
(1)求g(x)的表達(dá)式;
(2)若?x>0使f(x)≤0成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)1<m≤e,H(x)=f(x)-(m+1)x,證明:對?x1、x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{4+3i}{1+3i}$對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知A、B、C、D四點(diǎn)共線,$α∈(\frac{π}{2},π)$,且向量$\overrightarrow{AB}=(tanα,1)$,$\overrightarrow{CD}=(3tan2α,-2)$,則$tan(2α-\frac{π}{4})$等于( 。
A.$-\frac{1}{7}$B.$\frac{1}{7}$C.-7D.7

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知Sn為數(shù)列{an}的前n項(xiàng)和,若a2=3且Sn+1=2Sn,則a4等于( 。
A.6B.12C.16D.24

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=2,AB=1,F(xiàn)是線段BC的中點(diǎn)
(1)證明:PF⊥FD;
(2)若PB與平面ABCD所成的角為45o,求點(diǎn)A到平面PFD 距離.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=axlnx+b(a,b∈R)的圖象過點(diǎn)(1,0),且在該點(diǎn)處的切線斜率為1.
(Ⅰ)求f(x)的極值;
(Ⅱ)若$g(x)=\frac{1}{2}x{\;}^2-mx+\frac{3}{2}$,存在x0∈(0,+∞)使得f(x0)≥g(x0)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-(a+2)x+alnx(a>0).
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)若a=4,y=f(x)的圖象與直線y=m有三個(gè)不同交點(diǎn),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案