相關(guān)習(xí)題
 0  237907  237915  237921  237925  237931  237933  237937  237943  237945  237951  237957  237961  237963  237967  237973  237975  237981  237985  237987  237991  237993  237997  237999  238001  238002  238003  238005  238006  238007  238009  238011  238015  238017  238021  238023  238027  238033  238035  238041  238045  238047  238051  238057  238063  238065  238071  238075  238077  238083  238087  238093  238101  266669 

科目: 來源: 題型:選擇題

2.如圖所示的程序框圖,運(yùn)行程序后,輸出的結(jié)果為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知向量$\overrightarrow{a}$,$\overrightarrow$,且|$\overrightarrow{a}$|=2$\sqrt{3}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{6}$,$\overrightarrow{a}$⊥(3$\overrightarrow{a}$-$\overrightarrow$),則|$\overrightarrow$|等于( 。
A.6B.6$\sqrt{3}$C.12D.12$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

20.復(fù)數(shù)z滿足zi=1-$\sqrt{5}$i(i為虛數(shù)單位),則z等于( 。
A.-$\sqrt{5}$-iB.$\sqrt{5}$-iC.iD.-i

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知集合A={3a,3},B={a2+2a,4},A∩B={3},則A∪B等于(  )
A.{3,5}B.{3,4}C.{-9,3}D.{-9,3,4}

查看答案和解析>>

科目: 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}}\right.$(α為參數(shù)),M是C1上的動點,動點P滿足OP=3OM.
(1)求動點P的軌跡C2的參數(shù)方程;
(2)在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,射線$θ=\frac{π}{6}$與C1異于極點的交點為A,與C2異于極點的交點為B,求AB.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知f(x)=lnx,g(x)=-$\frac{m}{2}{x^2}+({m+1})x,m>0$.
(1)記h(x)=f(x)-g(x),討論h(x)的單調(diào)性;
(2)若f(x)<g(x)在(0,m)上恒成立,求m的最大整數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知動圓M在圓F1:(x+1)2+y2=$\frac{1}{4}$外部且與圓F1相切,同時還在圓F2:(x-1)2+y2=$\frac{49}{4}$內(nèi)部與圓F2相切.
(1)求動圓圓心M的軌跡方程;
(2)記(1)中求出的軌跡為C,C與x軸的兩個交點分別為A1、A2,P是C上異于A1、A2的動點,又直線l:x=$\sqrt{6}$與x軸交于點D,直線A1P、A2P分別交直線l于E、F兩點,求證:DE•DF為定值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,三棱柱ABC-A1B1C1中,側(cè)面BB1C1C為菱形,AC=AB1
(1)證明:AB⊥B1C;
(2)若$B{B_1}=a,∠CB{B_1}=\frac{2π}{3}$,平面AB1C⊥平面BB1C1C,直線AB與平面BB1C1C所成角為$\frac{π}{4}$,求點B1到平面ABC的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

14.長沙梅溪湖步步高購物中心在開業(yè)之后,為了解消費者購物金額的分布,在當(dāng)月的電腦消費小票中隨機(jī)抽取n張進(jìn)行統(tǒng)計,將結(jié)果分成6組,分別是:[0,100),[100,200),[200,300),[300,400),[400,500),[500,600],制成如下所示的頻率分布直方圖(假設(shè)消費金額均在[0,600]元的區(qū)間內(nèi)).
(1)若在消費金額為[400,600]元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票均來自[400,500)元區(qū)間的概率;
(2)為做好五一勞動節(jié)期間的商場促銷活動,策劃人員設(shè)計了兩種不同的促銷方案.
方案一:全場商品打八折.
方案二:全場購物滿100元減20元,滿300元減80元,滿500元減120元,以上減免只取最高優(yōu)惠,不重復(fù)減免.利用直方圖的信息分析:哪種方案優(yōu)惠力度更大,并說明理由(直方圖中每個小組取中間值作為該組數(shù)據(jù)的替代值).

查看答案和解析>>

科目: 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=$\sqrt{3}sinxcosx+{sin^2}$x.
(1)當(dāng)$x∈[{0,\frac{π}{2}}]$時,求f(x)的最大值;
(2)設(shè)A,B,C為△ABC的三個內(nèi)角,$f({\frac{C}{2}})=1$,且C為銳角,c=$\sqrt{3}$,求a-b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案