相關習題
 0  237942  237950  237956  237960  237966  237968  237972  237978  237980  237986  237992  237996  237998  238002  238008  238010  238016  238020  238022  238026  238028  238032  238034  238036  238037  238038  238040  238041  238042  238044  238046  238050  238052  238056  238058  238062  238068  238070  238076  238080  238082  238086  238092  238098  238100  238106  238110  238112  238118  238122  238128  238136  266669 

科目: 來源: 題型:填空題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}(x-2a)(a-x),x≤1\\ \sqrt{x}+a-1,x>1.\end{array}\right.$
(1)若a=0,x∈[0,4],則f(x)的值域是[-1,1];
(2)若f(x)恰有三個零點,則實數(shù)a的取值范圍是(-∞,0).

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知點A(1,0),B(3,0),若直線y=kx+1上存在點P,滿足PA⊥PB,則k的取值范圍是$[-\frac{4}{3},0]$.

查看答案和解析>>

科目: 來源: 題型:填空題

1.如圖,在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=CD=1,P是AB的中點,則$\overrightarrow{DP}•\overrightarrow{AB}$=-1.

查看答案和解析>>

科目: 來源: 題型:填空題

20.設a+b=M(a>0,b>0),M為常數(shù),且ab的最大值為2,則M等于2$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

19.在復平面內,復數(shù)z=1-2i對應的點到原點的距離是$\sqrt{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.如果$a={2^{1.2}},b={(\frac{1}{2})^{0.3}},c=2{log_2}\sqrt{3}$,那么( 。
A.c>b>aB.c>a>bC.a>b>cD.a>c>b

查看答案和解析>>

科目: 來源: 題型:選擇題

17.設命題p:?x∈[0,+∞),ex≥1,則¬p是(  )
A.?x0∉[0,+∞),${e^{x_0}}<1$B.?x∉[0,+∞),ex<1
C.?x0∈[0,+∞),${e^{x_0}}<1$D.?x∈[0,+∞),ex<1

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知O為坐標原點,F(xiàn)為拋物線y2=2px(p>0)的焦點,若拋物線與直線l:x-$\sqrt{3}$y-$\frac{p}{2}$=0在第一、四象限分別交于A,B兩點.則$\frac{(\overrightarrow{OF}-\overrightarrow{OA})^{2}}{(\overrightarrow{OF}-\overrightarrow{OB})^{2}}$的值等于( 。
A.97+56$\sqrt{3}$B.144C.73+40$\sqrt{3}$D.4p2

查看答案和解析>>

科目: 來源: 題型:填空題

15.對于?n∈N*,若數(shù)列{xn}滿足xn+1-xn>1,則稱這個數(shù)列為“K數(shù)列”.
(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實數(shù)m的取值范圍;
(Ⅱ)是否存在首項為-1的等差數(shù)列{an}為“K數(shù)列”,且其前n項和Sn滿足${S_n}<\frac{1}{2}{n^2}-n(n∈{N^*})$?若存在,求出{an}的通項公式;若不存在,請說明理由;
(Ⅲ)已知各項均為正整數(shù)的等比數(shù)列{an}是“K數(shù)列”,數(shù)列$\left\{{\frac{1}{2}{a_n}}\right\}$不是“K數(shù)列”,若${b_n}=\frac{{{a_{n+1}}}}{n+1}$,試判斷數(shù)列{bn}是否為“K數(shù)列”,并說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知函數(shù)$f(x)=ln(kx)+\frac{1}{x}-k(k>0)$.
(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)對任意$x∈[\frac{1}{k},\frac{2}{k}]$,都有xln(kx)-kx+1≤mx,求m的取值范圍.

查看答案和解析>>

同步練習冊答案