相關(guān)習(xí)題
 0  238592  238600  238606  238610  238616  238618  238622  238628  238630  238636  238642  238646  238648  238652  238658  238660  238666  238670  238672  238676  238678  238682  238684  238686  238687  238688  238690  238691  238692  238694  238696  238700  238702  238706  238708  238712  238718  238720  238726  238730  238732  238736  238742  238748  238750  238756  238760  238762  238768  238772  238778  238786  266669 

科目: 來源: 題型:填空題

8.己知A(1,0,0),B(0,1,0),C(0,0,1),則平面ABC的一個(gè)單位法向量是$(\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3})$.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知f ( x)=$\frac{1}{2}$x2,g ( x)=a ln x(a>0).
(Ⅰ)求函數(shù) F ( x)=f(x)g(x)的極值
(Ⅱ)若函數(shù) G( x)=f(x)-g(x)+(a-1)在區(qū)間 ($\frac{1}{e}$,e) 內(nèi)有兩個(gè)零點(diǎn),求的取值范圍;
(Ⅲ)函數(shù) h( x)=g ( x )-x+$\frac{1}{x}$,設(shè) x1∈(0,1),x2∈(1,+∞),若 h( x 2)-h( x 1)存在最大值,記為 M (a),則當(dāng) a≤e+1$\frac{1}{e}$時(shí),M (a) 是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1 (a>b>0 ) 經(jīng)過點(diǎn) P(1,$\frac{\sqrt{3}}{2}$ ),離心率 e=$\frac{\sqrt{3}}{2}$
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè)過點(diǎn)E(0,-2 ) 的直線l 與C相交于P,Q兩點(diǎn),求△OPQ 面積的最大值.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知函數(shù)f ( x)=ax3+bx2+cx+d 的圖象如圖所示,則$\frac{b+1}{a+1}$的取值范圍是( 。 
A.(-$\frac{3}{2}$,$\frac{1}{2}$ )B.(-$\frac{2}{5}$,1)C.(-$\frac{1}{2}$,$\frac{3}{2}$)D.(-$\frac{3}{2}$,1)

查看答案和解析>>

科目: 來源: 題型:選擇題

4.如圖在一個(gè)60° 的二面角的棱上有兩個(gè)點(diǎn)A,B,線段分別AC、BD在這個(gè)二面 角的兩個(gè)面內(nèi),并且都垂直于棱AB,且AB=AC=a,BD=2a,則CD 的長(zhǎng)為(  )
A.2aB.$\sqrt{5}$aC.aD.$\sqrt{3}$a

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知 m,n 表示兩條不同直線,α表示平面.下列說法正確的是(  )
A.若 m∥α,n∥α,則 m∥nB.若 m⊥α,n?α,則 m⊥n
C.若 m⊥α,m⊥n,則 n∥αD.若 m∥α,m⊥n,則 n⊥α

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知圓O:x2+y2=9,直線l1:x=6,圓O與x軸相交于點(diǎn)A,B(如圖),點(diǎn)P(-1,2)是圓O內(nèi)一點(diǎn),點(diǎn)Q為圓O上任一點(diǎn)(異于點(diǎn)A、B),直線AQ與l1相交于點(diǎn)C.
(1)若過點(diǎn)P的直線l2與圓O相交所得弦長(zhǎng)等于4$\sqrt{2}$,求直線l2的方程;
(2)設(shè)直線BQ、BC的斜率分別為kBQ、kBC,求證:kBQ•kBC為定值.

查看答案和解析>>

科目: 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=$\frac{1-x}{1+x}$
(1)試證明f(x)在(-∞,1)上為單調(diào)遞減函數(shù);
(2)若函數(shù)g(x)=($\frac{1}{2}$)f(x),且g(x)在區(qū)間[-3,-2]上沒有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

20.把正偶數(shù)數(shù)列{2n}的各項(xiàng)從小到大依次排成如圖的三角形數(shù)陣,記M(r,t)表示該數(shù)陣中第r行的第t個(gè)數(shù),則數(shù)陣中的數(shù)2 018對(duì)應(yīng)于(45,19).

查看答案和解析>>

科目: 來源: 題型:填空題

19.在復(fù)平面內(nèi),復(fù)數(shù)z=i(2-i),則|z|=$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案