相關習題
 0  238789  238797  238803  238807  238813  238815  238819  238825  238827  238833  238839  238843  238845  238849  238855  238857  238863  238867  238869  238873  238875  238879  238881  238883  238884  238885  238887  238888  238889  238891  238893  238897  238899  238903  238905  238909  238915  238917  238923  238927  238929  238933  238939  238945  238947  238953  238957  238959  238965  238969  238975  238983  266669 

科目: 來源: 題型:選擇題

14.盒中裝有形狀,大小完全相同的5個小球,其中紅色球3個,黃色球2個,若從中隨機取出2個球,則所取出的2個球顏色不同的概率等于( 。
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目: 來源: 題型:解答題

13.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}sinα-cosα}\\{y=3-2\sqrt{3}sinαcosα-2co{s}^{2}α}\end{array}\right.$ (α為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系.曲線C2的極坐標方程為ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$m
(1)求曲線C1的普通方程和曲線C2的直角坐標方程;
(2)若曲線C1與曲線C2有公共點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=(x2-x)ex
(1)求y=f(x)在點(1,f(1))處的切線方程y=g(x),并證明f(x)≥g(x)
(2)若方程f(x)=m(m∈R)有兩個正實數(shù)根x1,x2,求證:|x1-x2|<$\frac{m}{e}$+m+1.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知拋物線y2=8x與垂直x軸的直線l相交于A,B兩點,圓C:x2+y2=1分別與x軸正、負半軸相交于點P、N,且直線AP與BN交于點M
(1)求證:點M恒在拋物線上;
(2)求△AMN面積的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,梯形ABCD中,∠BAD=∠ADC=90°,CD=2,AD=AB=1,四邊形BDEF為正方形,且平面BDEF丄平面ABCD
(1)求證:DF⊥CE
(2)若AC與BD相交于點O,那么在棱AE上是否存在點G,使得平面OBG∥平面EFC?并說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

9.某人經(jīng)營一個抽獎游戲,顧客花費4元錢可購買一次游戲機會,毎次游戲,顧客從標有1、2、3、4的4個紅球和標有2、4的2個黑球共6個球中隨機摸出2個球,并根據(jù)模出的球的情況進行兌獎,經(jīng)營者將顧客模出的球的情況分成以下類別:
A.兩球的顔色相同且號碼相鄰;
B.兩球的顏色相同,但號碼不相鄰;
C.兩球的顔色不同.但號碼相鄰;
D.兩球的號碼相同
E.其他情況
經(jīng)營者打算將以上五種類別中最不容易發(fā)生的一種類別對應一等獎,最容易發(fā)生的一種類別對應二等獎.其它類別對應三等獎
(1)一、二等獎分別對應哪一種類別(用宇母表示即可)
(2)若中一、二、三等獎分別獲得價值10元、4元、1元的獎品,某天所有顧客參加游戲的次數(shù)共計100次,試估計經(jīng)營者這一天的盈利.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1}{2}$cos22x+$\frac{\sqrt{3}}{2}$sin2xcos2x+1
(1)求f(x)的最小正周期;
(2)當x∈[0,$\frac{π}{4}$]時,求f(x)的最值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.設函數(shù)f(x)=|x2-2x|-ax-a,其中a>0,若只存在兩個整數(shù)x,使得f(x)<0,則a的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

科目: 來源: 題型:解答題

6.在△ABC中,AC=4,BC=6,∠ACB=120°,若$\overrightarrow{AD}$=-2$\overrightarrow{BD}$,則$\overrightarrow{AC}$•$\overrightarrow{CD}$=$\frac{8}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

5.我市某小學三年級有甲、乙兩個班,其中甲班有男生30人,女生20人,乙班有男生25人,女生25人,現(xiàn)在需要各班按男、女生分層抽取20%的學生進行某項調(diào)查,則兩個班共抽取男生人數(shù)是11.

查看答案和解析>>

同步練習冊答案