相關(guān)習(xí)題
 0  239629  239637  239643  239647  239653  239655  239659  239665  239667  239673  239679  239683  239685  239689  239695  239697  239703  239707  239709  239713  239715  239719  239721  239723  239724  239725  239727  239728  239729  239731  239733  239737  239739  239743  239745  239749  239755  239757  239763  239767  239769  239773  239779  239785  239787  239793  239797  239799  239805  239809  239815  239823  266669 

科目: 來源: 題型:選擇題

9.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x}\\ log_2^x\end{array}\right.$$\begin{array}{l}x≤0\\ x>0\end{array}$,若$f(a)=\frac{1}{2}$,則a=(  )
A.-1B.-1或$\sqrt{2}$C.$\sqrt{2}$D.-1或$-\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知a,b,c∈R+,ab+bc+ca=1,求證:
(Ⅰ)a2+b2+c2≥1;
(Ⅱ)$a+b+c≥\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

7.某公司的組織結(jié)構(gòu)圖如圖所示,則開發(fā)部的直接領(lǐng)導(dǎo)是總經(jīng)理.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.若回歸直線的斜率$\widehatb∈(0,+∞)$,則相關(guān)系數(shù)r的取值范圍為( 。
A.(0,1]B.[-1,0)C.0D.無法確定

查看答案和解析>>

科目: 來源: 題型:選擇題

5.《數(shù)學(xué)選修1-2》的知識(shí)結(jié)構(gòu)圖如圖所示,則“直接證明與間接證明”的“上位”要素是( 。
A.推理與證明B.統(tǒng)計(jì)案例
C.數(shù)系的擴(kuò)充與復(fù)數(shù)的引入D.框圖

查看答案和解析>>

科目: 來源: 題型:解答題

4.(1)證明:如果a>0,b>0,那么$\frac{a}{{\sqrt}}+\frac{{\sqrt{a}}}≥\sqrt{a}+\sqrt$;
(2)已知2x+3y+4z=10,求x2+y2+z2的最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

3.線段AB長為60cm,現(xiàn)從該線段隨機(jī)取兩點(diǎn),則兩點(diǎn)距離小于15cm的概率為$\frac{7}{16}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.函數(shù)f(x)=$\frac{1}{x}$(log24x+1)-2的圖象( 。
A.關(guān)于x軸對(duì)稱B.關(guān)于y軸對(duì)稱C.關(guān)于原點(diǎn)對(duì)稱D.關(guān)于y=x對(duì)稱

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知函數(shù)$f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分圖象如圖所示,下列說法正確的有( 。﹤(gè)
①函數(shù)f(x)的圖象關(guān)于直線$x=-\frac{5π}{12}$對(duì)稱
②函數(shù)f(x)在$[-\frac{π}{3},0]$上單調(diào)遞增
③函數(shù)f(x)的圖象關(guān)于點(diǎn)$(-\frac{2π}{3},0)$對(duì)稱
④將函數(shù)y=2sin2x的圖象向左平移$\frac{π}{3}$個(gè)單位得到f(x)的圖象.
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,橢圓的四個(gè)頂點(diǎn)所圍成菱形的面積為4
(Ⅰ)求橢圓的方程;
(Ⅱ)四邊形ABCD的頂點(diǎn)在橢圓C上,且對(duì)角線AC,BD均過坐標(biāo)原點(diǎn)O,若kAC•kBD=-$\frac{1}{4}$
(i)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的范圍;(ii)求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案