科目: 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)若,求函數(shù)的極值;
(2)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)若,設(shè)函數(shù)在上的極值點(diǎn)為,求證: .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐中,底面為梯形, 底面, , , , .
(1)求證:平面 平面;
(2)設(shè)為上的一點(diǎn),滿足,若直線與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的無窮數(shù)列的前項(xiàng)和為,且滿足(其中為常數(shù)), .數(shù)列滿足.
(1)證明數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;
(2)若無窮等比數(shù)列滿足:對任意的,數(shù)列中總存在兩個(gè)不同的項(xiàng), 使得,求的公比.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知小明(如圖中所示)身高米,路燈高米, , 均垂直于水平地面,分別與地面交于點(diǎn), .點(diǎn)光源從發(fā)出,小明在地上的影子記作.
(1)小明沿著圓心為,半徑為米的圓周在地面上走一圈,求掃過的圖形面積;
(2)若米,小明從出發(fā),以米/秒的速度沿線段走到, ,且米. 秒時(shí),小明在地面上的影子長度記為(單位:米),求的表達(dá)式與最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】是拋物線為上的一點(diǎn),以S為圓心,r為半徑做圓,分別交x軸于A,B兩點(diǎn),連結(jié)并延長SA、SB,分別交拋物線于C、D兩點(diǎn).
求拋物線的方程.
求證:直線CD的斜率為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】邊長為2的正三角形ABC中,點(diǎn)D,E,G分別是邊AB,AC,BC的中點(diǎn),連接DE,連接AG交DE于點(diǎn)現(xiàn)將沿DE折疊至的位置,使得平面平面BCED,連接A1G,EG.
證明:DE∥平面A1BC
求點(diǎn)B到平面A1EG的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若,畫出函數(shù)的圖象,并指出函數(shù)的單調(diào)區(qū)間;
(2)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐的底面是平行四邊形, 平面, ,點(diǎn)是棱上異于、的一點(diǎn).
(1)求證: ;
(2)過點(diǎn)和平面截四棱錐得到截面(點(diǎn)在棱上),求證: .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線過坐標(biāo)原點(diǎn),圓的方程為.
(1)當(dāng)直線的斜率為時(shí),求與圓相交所得的弦長;
(2)設(shè)直線與圓交于兩點(diǎn),且為的中點(diǎn),求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com